init
commit
9989eeb879
|
@ -0,0 +1,12 @@
|
|||
{
|
||||
"permissions": {
|
||||
"allow": [
|
||||
"Bash(mkdir:*)",
|
||||
"Bash(ls:*)",
|
||||
"Bash(unzip:*)",
|
||||
"Bash(mv:*)",
|
||||
"Bash(docker-compose up:*)"
|
||||
],
|
||||
"deny": []
|
||||
}
|
||||
}
|
|
@ -0,0 +1,11 @@
|
|||
node_modules
|
||||
npm-debug.log
|
||||
Dockerfile
|
||||
.dockerignore
|
||||
.git
|
||||
.gitignore
|
||||
README.md
|
||||
.env
|
||||
.nyc_output
|
||||
coverage
|
||||
.vscode
|
|
@ -0,0 +1,52 @@
|
|||
# See https://help.github.com/articles/ignoring-files/ for more about ignoring files.
|
||||
|
||||
vosk-model
|
||||
|
||||
# dependencies
|
||||
/node_modules
|
||||
/.pnp
|
||||
.pnp.js
|
||||
/.yarn/*
|
||||
!/.yarn/releases
|
||||
!/.yarn/plugins
|
||||
!/.yarn/sdks
|
||||
|
||||
# testing
|
||||
/coverage
|
||||
|
||||
# next.js
|
||||
/.next/
|
||||
/out/
|
||||
public/sitemap.xml
|
||||
.vercel
|
||||
|
||||
# production
|
||||
/build
|
||||
*.xml
|
||||
|
||||
# rss feed
|
||||
/public/feed.xml
|
||||
|
||||
# search
|
||||
/public/search.json
|
||||
|
||||
# misc
|
||||
.DS_Store
|
||||
.idea
|
||||
|
||||
# debug
|
||||
*.log
|
||||
npm-debug.log*
|
||||
yarn-debug.log*
|
||||
yarn-error.log*
|
||||
|
||||
# local env files
|
||||
.env
|
||||
.env.local
|
||||
.env.development.local
|
||||
.env.test.local
|
||||
.env.production.local
|
||||
|
||||
# Contentlayer
|
||||
.contentlayer
|
||||
|
|
@ -0,0 +1,51 @@
|
|||
# CLAUDE.md
|
||||
|
||||
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
||||
|
||||
## Project Overview
|
||||
|
||||
This is a speech-to-text proof of concept that runs entirely locally without third-party APIs. The system captures live microphone audio from a browser, sends it to a backend server, and converts it to text using open-source libraries like Vosk.
|
||||
|
||||
## Architecture
|
||||
|
||||
The project consists of two main components:
|
||||
- **Frontend**: Basic HTML page with JavaScript for microphone capture and audio streaming
|
||||
- **Backend**: Server (Node.js or Python) that receives audio streams and performs speech-to-text conversion using local libraries
|
||||
|
||||
## Development Environment
|
||||
|
||||
- User runs fish terminal
|
||||
- All processing must be local (no cloud services)
|
||||
- System should utilize local hardware for speech recognition
|
||||
|
||||
## Key Implementation Requirements
|
||||
|
||||
- Real-time or near-real-time audio streaming from browser to backend
|
||||
- Local speech-to-text processing using libraries like Vosk
|
||||
- Display transcribed text on the frontend UI
|
||||
- Start/stop recording functionality
|
||||
- WebSocket or similar real-time communication between frontend and backend
|
||||
|
||||
## Development Commands
|
||||
|
||||
### Docker (Recommended)
|
||||
- `docker-compose up --build` - Build and start the application
|
||||
- `docker-compose down` - Stop the application
|
||||
|
||||
### Local Development
|
||||
- `yarn install` - Install dependencies (yarn is configured)
|
||||
- `yarn start` - Start the server
|
||||
- `yarn dev` - Start with nodemon for development
|
||||
|
||||
## Technology Stack
|
||||
|
||||
- **Backend**: Node.js with Express and WebSocket server
|
||||
- **Frontend**: HTML5 + JavaScript with AudioWorklet for audio capture
|
||||
- **Speech Recognition**: Vosk library (Python) for local processing
|
||||
- **Communication**: WebSocket for real-time audio streaming and transcription
|
||||
|
||||
## Setup Requirements
|
||||
|
||||
- Download Vosk model to `./vosk-model/` directory
|
||||
- Server runs on http://localhost:3000
|
||||
- WebSocket API available at `ws://localhost:3000` for external clients
|
|
@ -0,0 +1,41 @@
|
|||
FROM node:18
|
||||
|
||||
# Install Python and required dependencies
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3 \
|
||||
python3-pip \
|
||||
python3-dev \
|
||||
python3-venv \
|
||||
build-essential \
|
||||
libsndfile1 \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
# Copy Python requirements and install in virtual environment
|
||||
COPY requirements.txt ./
|
||||
RUN python3 -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
# Copy package files
|
||||
COPY package.json yarn.lock* ./
|
||||
COPY .yarnrc ./
|
||||
|
||||
# Install Node.js dependencies
|
||||
RUN yarn install --frozen-lockfile
|
||||
|
||||
# Copy application code
|
||||
COPY . .
|
||||
|
||||
# Make Python script executable
|
||||
RUN chmod +x speech_processor.py
|
||||
|
||||
# Expose port
|
||||
EXPOSE 3000
|
||||
|
||||
# Ensure virtual environment is active for runtime
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
# Start the application
|
||||
CMD ["yarn", "start"]
|
|
@ -0,0 +1,136 @@
|
|||
# Speech-to-Text POC
|
||||
|
||||
A speech-to-text proof of concept that processes audio locally using Vosk without requiring cloud APIs. The system exposes a WebSocket API that any client can connect to for real-time speech recognition.
|
||||
|
||||
## Features
|
||||
|
||||
- **Local Processing**: Uses Vosk for offline speech recognition
|
||||
- **WebSocket API**: Server exposes `ws://localhost:3000` for any client to connect
|
||||
- **Web Interface**: Browser-based demo for testing
|
||||
- **Docker Support**: Complete containerized solution
|
||||
- **No Cloud Dependencies**: Everything runs locally
|
||||
|
||||
## Quick Start
|
||||
|
||||
1. **Download Vosk model:**
|
||||
```bash
|
||||
curl -L -o vosk-model-small-en-us-0.15.zip https://alphacephei.com/vosk/models/vosk-model-small-en-us-0.15.zip
|
||||
unzip vosk-model-small-en-us-0.15.zip
|
||||
mv vosk-model-small-en-us-0.15 vosk-model
|
||||
```
|
||||
|
||||
2. **Start with Docker:**
|
||||
```bash
|
||||
docker-compose up --build
|
||||
```
|
||||
|
||||
3. **Test the web interface:**
|
||||
- Open `http://localhost:3000` in your browser
|
||||
- Click "Start Recording" and speak
|
||||
- See transcriptions appear in real-time
|
||||
|
||||
## WebSocket API Usage
|
||||
|
||||
The server exposes a WebSocket endpoint at `ws://localhost:3000` that accepts:
|
||||
|
||||
- **Input**: Raw WAV audio data (16kHz, 16-bit, mono)
|
||||
- **Output**: JSON messages with transcriptions
|
||||
|
||||
### Example Client Usage
|
||||
|
||||
```javascript
|
||||
const WebSocket = require('ws');
|
||||
const fs = require('fs');
|
||||
|
||||
const ws = new WebSocket('ws://localhost:3000');
|
||||
|
||||
ws.on('open', () => {
|
||||
// Send WAV audio file
|
||||
const audioData = fs.readFileSync('audio.wav');
|
||||
ws.send(audioData);
|
||||
});
|
||||
|
||||
ws.on('message', (data) => {
|
||||
const message = JSON.parse(data);
|
||||
if (message.type === 'transcription') {
|
||||
console.log('Text:', message.text);
|
||||
}
|
||||
});
|
||||
```
|
||||
|
||||
See `client-example.js` for a complete Node.js client implementation.
|
||||
|
||||
## Local Development Setup
|
||||
|
||||
### Prerequisites
|
||||
- Node.js 14+
|
||||
- Python 3.8+
|
||||
- Vosk model (downloaded as above)
|
||||
|
||||
### Installation
|
||||
|
||||
1. **Install Node.js dependencies:**
|
||||
```bash
|
||||
yarn install
|
||||
```
|
||||
|
||||
2. **Install Python dependencies:**
|
||||
```bash
|
||||
python3 -m venv venv
|
||||
source venv/bin/activate # On Windows: venv\Scripts\activate
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. **Start the server:**
|
||||
```bash
|
||||
yarn start
|
||||
```
|
||||
|
||||
## Architecture
|
||||
|
||||
- **Backend**: Node.js Express server with WebSocket support
|
||||
- **Speech Processing**: Python subprocess using Vosk library
|
||||
- **Frontend**: HTML5 + JavaScript with AudioWorklet for microphone capture
|
||||
- **Communication**: WebSocket for bidirectional real-time communication
|
||||
|
||||
## Supported Audio Formats
|
||||
|
||||
- **Input**: WAV files (16kHz, 16-bit, mono preferred)
|
||||
- **Browser**: Automatic conversion from microphone input
|
||||
- **API**: Raw audio buffers or WAV format
|
||||
|
||||
## Performance Notes
|
||||
|
||||
- **Model Size**: Small model (~39MB) for fast loading
|
||||
- **Latency**: Near real-time processing depending on audio chunk size
|
||||
- **Accuracy**: Good for clear speech, may vary with background noise
|
||||
- **Resource Usage**: Lightweight, suitable for local deployment
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
1. **Model not found**: Ensure Vosk model is extracted to `./vosk-model/` directory
|
||||
2. **Python errors**: Check that virtual environment is activated and dependencies installed
|
||||
3. **WebSocket connection fails**: Verify server is running on port 3000
|
||||
4. **No audio**: Check browser microphone permissions
|
||||
|
||||
### Docker Issues
|
||||
|
||||
- **Build failures**: Ensure you have enough disk space for the image
|
||||
- **Model mounting**: Verify `./vosk-model/` exists before running docker-compose
|
||||
- **Permission errors**: Check file permissions on the vosk-model directory
|
||||
|
||||
## Development
|
||||
|
||||
- **Server logs**: `docker-compose logs -f` to see real-time logs
|
||||
- **Rebuild**: `docker-compose up --build` after code changes
|
||||
- **Stop**: `docker-compose down` to stop all services
|
||||
|
||||
## Model Information
|
||||
|
||||
- **Current**: Vosk Small English US (0.15)
|
||||
- **Size**: ~39MB
|
||||
- **Languages**: English (US)
|
||||
- **Accuracy**: Optimized for speed over accuracy
|
||||
- **Alternatives**: See [Vosk Models](https://alphacephei.com/vosk/models) for other languages/sizes
|
|
@ -0,0 +1,71 @@
|
|||
// Example client that can connect to the WebSocket STT API
|
||||
const WebSocket = require('ws');
|
||||
const fs = require('fs');
|
||||
|
||||
class STTClient {
|
||||
constructor(serverUrl = 'ws://localhost:3000') {
|
||||
this.ws = new WebSocket(serverUrl);
|
||||
this.setupWebSocket();
|
||||
}
|
||||
|
||||
setupWebSocket() {
|
||||
this.ws.on('open', () => {
|
||||
console.log('Connected to STT server');
|
||||
});
|
||||
|
||||
this.ws.on('message', (data) => {
|
||||
const message = JSON.parse(data);
|
||||
|
||||
if (message.type === 'transcription') {
|
||||
console.log('Transcription:', message.text);
|
||||
} else if (message.type === 'error') {
|
||||
console.error('STT Error:', message.message);
|
||||
}
|
||||
});
|
||||
|
||||
this.ws.on('close', () => {
|
||||
console.log('Disconnected from STT server');
|
||||
});
|
||||
|
||||
this.ws.on('error', (error) => {
|
||||
console.error('WebSocket error:', error);
|
||||
});
|
||||
}
|
||||
|
||||
// Send audio file for transcription
|
||||
sendAudioFile(filePath) {
|
||||
if (this.ws.readyState === WebSocket.OPEN) {
|
||||
const audioData = fs.readFileSync(filePath);
|
||||
this.ws.send(audioData);
|
||||
console.log(`Sent audio file: ${filePath}`);
|
||||
} else {
|
||||
console.error('WebSocket not connected');
|
||||
}
|
||||
}
|
||||
|
||||
// Send raw audio buffer
|
||||
sendAudioBuffer(audioBuffer) {
|
||||
if (this.ws.readyState === WebSocket.OPEN) {
|
||||
this.ws.send(audioBuffer);
|
||||
} else {
|
||||
console.error('WebSocket not connected');
|
||||
}
|
||||
}
|
||||
|
||||
close() {
|
||||
this.ws.close();
|
||||
}
|
||||
}
|
||||
|
||||
// Example usage
|
||||
if (require.main === module) {
|
||||
const client = new STTClient();
|
||||
|
||||
// Example: Send an audio file
|
||||
// client.sendAudioFile('./test-audio.wav');
|
||||
|
||||
// Keep the process alive
|
||||
process.stdin.resume();
|
||||
}
|
||||
|
||||
module.exports = STTClient;
|
|
@ -0,0 +1,16 @@
|
|||
services:
|
||||
stt-app:
|
||||
build: .
|
||||
ports:
|
||||
- "3000:3000"
|
||||
volumes:
|
||||
- ./public:/app/public
|
||||
- ./vosk-model:/app/vosk-model:ro
|
||||
environment:
|
||||
- NODE_ENV=development
|
||||
restart: unless-stopped
|
||||
healthcheck:
|
||||
test: ["CMD", "wget", "--no-verbose", "--tries=1", "--spider", "http://localhost:3000"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 3
|
|
@ -0,0 +1,27 @@
|
|||
{
|
||||
"name": "stt-simple",
|
||||
"version": "1.0.0",
|
||||
"description": "Simple Speech-to-Text POC using local libraries",
|
||||
"main": "server.js",
|
||||
"scripts": {
|
||||
"start": "node server.js",
|
||||
"dev": "nodemon server.js"
|
||||
},
|
||||
"dependencies": {
|
||||
"ws": "^8.14.2",
|
||||
"express": "^4.18.2",
|
||||
"node-wav": "^0.0.2",
|
||||
"stream": "^0.0.2"
|
||||
},
|
||||
"devDependencies": {
|
||||
"nodemon": "^3.0.2"
|
||||
},
|
||||
"keywords": [
|
||||
"speech-to-text",
|
||||
"vosk",
|
||||
"websockets"
|
||||
],
|
||||
"author": "",
|
||||
"license": "MIT",
|
||||
"packageManager": "yarn@1.22.22+sha512.a6b2f7906b721bba3d67d4aff083df04dad64c399707841b7acf00f6b133b7ac24255f2652fa22ae3534329dc6180534e98d17432037ff6fd140556e2bb3137e"
|
||||
}
|
|
@ -0,0 +1,205 @@
|
|||
class SpeechToTextApp {
|
||||
constructor() {
|
||||
this.ws = null;
|
||||
this.audioContext = null;
|
||||
this.processor = null;
|
||||
this.stream = null;
|
||||
this.isRecording = false;
|
||||
|
||||
this.startBtn = document.getElementById('startBtn');
|
||||
this.stopBtn = document.getElementById('stopBtn');
|
||||
this.clearBtn = document.getElementById('clearBtn');
|
||||
this.status = document.getElementById('status');
|
||||
this.transcription = document.getElementById('transcription');
|
||||
|
||||
this.initializeEventListeners();
|
||||
this.connectWebSocket();
|
||||
}
|
||||
|
||||
initializeEventListeners() {
|
||||
this.startBtn.addEventListener('click', () => this.startRecording());
|
||||
this.stopBtn.addEventListener('click', () => this.stopRecording());
|
||||
this.clearBtn.addEventListener('click', () => this.clearTranscription());
|
||||
}
|
||||
|
||||
connectWebSocket() {
|
||||
const wsProtocol = window.location.protocol === 'https:' ? 'wss:' : 'ws:';
|
||||
const wsUrl = `${wsProtocol}//${window.location.host}`;
|
||||
|
||||
this.ws = new WebSocket(wsUrl);
|
||||
|
||||
this.ws.onopen = () => {
|
||||
this.updateStatus('Connected to server', 'success');
|
||||
};
|
||||
|
||||
this.ws.onmessage = (event) => {
|
||||
const data = JSON.parse(event.data);
|
||||
if (data.type === 'transcription' && data.text) {
|
||||
this.appendTranscription(data.text);
|
||||
}
|
||||
};
|
||||
|
||||
this.ws.onclose = () => {
|
||||
this.updateStatus('Disconnected from server', 'error');
|
||||
setTimeout(() => this.connectWebSocket(), 3000);
|
||||
};
|
||||
|
||||
this.ws.onerror = (error) => {
|
||||
this.updateStatus('WebSocket error', 'error');
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
async startRecording() {
|
||||
try {
|
||||
this.stream = await navigator.mediaDevices.getUserMedia({
|
||||
audio: {
|
||||
sampleRate: 16000,
|
||||
channelCount: 1,
|
||||
echoCancellation: true,
|
||||
noiseSuppression: true
|
||||
}
|
||||
});
|
||||
|
||||
this.audioContext = new (window.AudioContext || window.webkitAudioContext)({
|
||||
sampleRate: 16000
|
||||
});
|
||||
|
||||
const source = this.audioContext.createMediaStreamSource(this.stream);
|
||||
|
||||
await this.audioContext.audioWorklet.addModule('data:text/javascript,' + encodeURIComponent(`
|
||||
class AudioProcessor extends AudioWorkletProcessor {
|
||||
constructor() {
|
||||
super();
|
||||
this.bufferSize = 4096;
|
||||
this.buffer = new Float32Array(this.bufferSize);
|
||||
this.bufferIndex = 0;
|
||||
}
|
||||
|
||||
process(inputs) {
|
||||
const input = inputs[0];
|
||||
if (input.length > 0) {
|
||||
const audioData = input[0];
|
||||
|
||||
for (let i = 0; i < audioData.length; i++) {
|
||||
this.buffer[this.bufferIndex] = audioData[i];
|
||||
this.bufferIndex++;
|
||||
|
||||
if (this.bufferIndex >= this.bufferSize) {
|
||||
// Convert to WAV format
|
||||
const int16Array = new Int16Array(this.bufferSize);
|
||||
for (let j = 0; j < this.bufferSize; j++) {
|
||||
int16Array[j] = Math.max(-32768, Math.min(32767, this.buffer[j] * 32768));
|
||||
}
|
||||
|
||||
// Create WAV header
|
||||
const wavBuffer = this.createWAVBuffer(int16Array);
|
||||
this.port.postMessage(wavBuffer);
|
||||
|
||||
this.bufferIndex = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
createWAVBuffer(samples) {
|
||||
const length = samples.length;
|
||||
const buffer = new ArrayBuffer(44 + length * 2);
|
||||
const view = new DataView(buffer);
|
||||
|
||||
// WAV header
|
||||
const writeString = (offset, string) => {
|
||||
for (let i = 0; i < string.length; i++) {
|
||||
view.setUint8(offset + i, string.charCodeAt(i));
|
||||
}
|
||||
};
|
||||
|
||||
writeString(0, 'RIFF');
|
||||
view.setUint32(4, 36 + length * 2, true);
|
||||
writeString(8, 'WAVE');
|
||||
writeString(12, 'fmt ');
|
||||
view.setUint32(16, 16, true);
|
||||
view.setUint16(20, 1, true);
|
||||
view.setUint16(22, 1, true);
|
||||
view.setUint32(24, 16000, true);
|
||||
view.setUint32(28, 16000 * 2, true);
|
||||
view.setUint16(32, 2, true);
|
||||
view.setUint16(34, 16, true);
|
||||
writeString(36, 'data');
|
||||
view.setUint32(40, length * 2, true);
|
||||
|
||||
// Convert samples to bytes
|
||||
let offset = 44;
|
||||
for (let i = 0; i < length; i++) {
|
||||
view.setInt16(offset, samples[i], true);
|
||||
offset += 2;
|
||||
}
|
||||
|
||||
return buffer;
|
||||
}
|
||||
}
|
||||
registerProcessor('audio-processor', AudioProcessor);
|
||||
`));
|
||||
|
||||
this.processor = new AudioWorkletNode(this.audioContext, 'audio-processor');
|
||||
|
||||
this.processor.port.onmessage = (event) => {
|
||||
if (this.ws && this.ws.readyState === WebSocket.OPEN) {
|
||||
this.ws.send(event.data);
|
||||
}
|
||||
};
|
||||
|
||||
source.connect(this.processor);
|
||||
|
||||
this.isRecording = true;
|
||||
this.startBtn.disabled = true;
|
||||
this.stopBtn.disabled = false;
|
||||
this.startBtn.textContent = 'Recording...';
|
||||
this.startBtn.classList.add('recording');
|
||||
this.updateStatus('🔴 Recording...', 'success');
|
||||
|
||||
} catch (error) {
|
||||
this.updateStatus('Error accessing microphone: ' + error.message, 'error');
|
||||
console.error('Error starting recording:', error);
|
||||
}
|
||||
}
|
||||
|
||||
stopRecording() {
|
||||
if (this.stream) {
|
||||
this.stream.getTracks().forEach(track => track.stop());
|
||||
}
|
||||
|
||||
if (this.audioContext) {
|
||||
this.audioContext.close();
|
||||
}
|
||||
|
||||
this.isRecording = false;
|
||||
this.startBtn.disabled = false;
|
||||
this.stopBtn.disabled = true;
|
||||
this.startBtn.textContent = 'Start Recording';
|
||||
this.startBtn.classList.remove('recording');
|
||||
this.updateStatus('Recording stopped', 'success');
|
||||
}
|
||||
|
||||
clearTranscription() {
|
||||
this.transcription.textContent = 'Transcribed text will appear here...';
|
||||
}
|
||||
|
||||
appendTranscription(text) {
|
||||
if (this.transcription.textContent === 'Transcribed text will appear here...') {
|
||||
this.transcription.textContent = '';
|
||||
}
|
||||
this.transcription.textContent += text + ' ';
|
||||
this.transcription.scrollTop = this.transcription.scrollHeight;
|
||||
}
|
||||
|
||||
updateStatus(message, type = '') {
|
||||
this.status.textContent = message;
|
||||
this.status.className = `status ${type}`;
|
||||
}
|
||||
}
|
||||
|
||||
document.addEventListener('DOMContentLoaded', () => {
|
||||
new SpeechToTextApp();
|
||||
});
|
|
@ -0,0 +1,99 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>Speech-to-Text POC</title>
|
||||
<style>
|
||||
body {
|
||||
font-family: Arial, sans-serif;
|
||||
max-width: 800px;
|
||||
margin: 0 auto;
|
||||
padding: 20px;
|
||||
background-color: #f5f5f5;
|
||||
}
|
||||
.container {
|
||||
background: white;
|
||||
padding: 30px;
|
||||
border-radius: 10px;
|
||||
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
|
||||
}
|
||||
h1 {
|
||||
text-align: center;
|
||||
color: #333;
|
||||
}
|
||||
.controls {
|
||||
text-align: center;
|
||||
margin: 30px 0;
|
||||
}
|
||||
button {
|
||||
background: #007bff;
|
||||
color: white;
|
||||
border: none;
|
||||
padding: 15px 30px;
|
||||
border-radius: 5px;
|
||||
cursor: pointer;
|
||||
font-size: 16px;
|
||||
margin: 0 10px;
|
||||
}
|
||||
button:hover {
|
||||
background: #0056b3;
|
||||
}
|
||||
button:disabled {
|
||||
background: #ccc;
|
||||
cursor: not-allowed;
|
||||
}
|
||||
.recording {
|
||||
background: #dc3545 !important;
|
||||
}
|
||||
.status {
|
||||
text-align: center;
|
||||
margin: 20px 0;
|
||||
font-weight: bold;
|
||||
}
|
||||
.transcription {
|
||||
background: #f8f9fa;
|
||||
border: 1px solid #dee2e6;
|
||||
border-radius: 5px;
|
||||
padding: 20px;
|
||||
min-height: 200px;
|
||||
margin: 20px 0;
|
||||
font-size: 16px;
|
||||
line-height: 1.5;
|
||||
}
|
||||
.error {
|
||||
color: #dc3545;
|
||||
background: #f8d7da;
|
||||
padding: 10px;
|
||||
border-radius: 5px;
|
||||
margin: 10px 0;
|
||||
}
|
||||
.success {
|
||||
color: #155724;
|
||||
background: #d4edda;
|
||||
padding: 10px;
|
||||
border-radius: 5px;
|
||||
margin: 10px 0;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="container">
|
||||
<h1>🎙️ Speech-to-Text POC</h1>
|
||||
|
||||
<div class="controls">
|
||||
<button id="startBtn">Start Recording</button>
|
||||
<button id="stopBtn" disabled>Stop Recording</button>
|
||||
<button id="clearBtn">Clear Text</button>
|
||||
</div>
|
||||
|
||||
<div id="status" class="status">Ready to record</div>
|
||||
|
||||
<div id="transcription" class="transcription">
|
||||
Transcribed text will appear here...
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script src="app.js"></script>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,24 @@
|
|||
### 🧩 **Requirement: Speech-to-Text POC (No 3rd-Party APIs)**
|
||||
|
||||
#### **Goal**
|
||||
|
||||
Build a simple proof of concept (POC) that captures live microphone audio from the browser, sends it to a backend server, converts the audio to text using an open-source/local library, and displays the text on the UI.
|
||||
|
||||
#### **Key Points**
|
||||
|
||||
* A basic `index.html` page to:
|
||||
|
||||
* Start/stop microphone recording.
|
||||
* Stream audio to the backend.
|
||||
* Display the transcribed text in real-time or after processing.
|
||||
* A backend server (e.g., Node.js or Python) that:
|
||||
|
||||
* Receives audio stream.
|
||||
* Uses a **local speech-to-text library** (e.g., [Vosk](https://alphacephei.com/vosk/)) — **no external APIs**.
|
||||
* Sends back the transcribed text to the frontend.
|
||||
|
||||
#### **Note**
|
||||
|
||||
* I am using fish terminal
|
||||
* The solution should run locally and utilize system hardware.
|
||||
* Avoid any third-party cloud services.
|
|
@ -0,0 +1,3 @@
|
|||
vosk==0.3.45
|
||||
soundfile==0.12.1
|
||||
numpy==1.24.3
|
|
@ -0,0 +1,144 @@
|
|||
const express = require('express');
|
||||
const WebSocket = require('ws');
|
||||
const { spawn } = require('child_process');
|
||||
const fs = require('fs');
|
||||
|
||||
const app = express();
|
||||
const PORT = 3000;
|
||||
|
||||
app.use(express.static('public'));
|
||||
|
||||
const server = app.listen(PORT, () => {
|
||||
console.log(`Server running on http://localhost:${PORT}`);
|
||||
console.log('Using Python SpeechRecognition with PocketSphinx for local STT');
|
||||
});
|
||||
|
||||
const wss = new WebSocket.Server({ server });
|
||||
|
||||
class SpeechProcessor {
|
||||
constructor() {
|
||||
this.pythonProcess = null;
|
||||
this.initializePythonProcess();
|
||||
}
|
||||
|
||||
initializePythonProcess() {
|
||||
try {
|
||||
this.pythonProcess = spawn('python3', ['speech_processor.py'], {
|
||||
stdio: ['pipe', 'pipe', 'pipe']
|
||||
});
|
||||
|
||||
this.pythonProcess.stderr.on('data', (data) => {
|
||||
console.error('Python process error:', data.toString());
|
||||
});
|
||||
|
||||
this.pythonProcess.on('close', (code) => {
|
||||
console.log(`Python process closed with code ${code}`);
|
||||
// Restart process if it dies
|
||||
setTimeout(() => this.initializePythonProcess(), 1000);
|
||||
});
|
||||
|
||||
console.log('Python speech processor initialized');
|
||||
} catch (error) {
|
||||
console.error('Failed to initialize Python process:', error);
|
||||
}
|
||||
}
|
||||
|
||||
async processAudio(audioBuffer) {
|
||||
return new Promise((resolve, reject) => {
|
||||
if (!this.pythonProcess) {
|
||||
reject(new Error('Python process not available'));
|
||||
return;
|
||||
}
|
||||
|
||||
// Send audio data length first
|
||||
const lengthBuffer = Buffer.allocUnsafe(4);
|
||||
lengthBuffer.writeUInt32BE(audioBuffer.length, 0);
|
||||
this.pythonProcess.stdin.write(lengthBuffer);
|
||||
|
||||
// Send audio data
|
||||
this.pythonProcess.stdin.write(audioBuffer);
|
||||
|
||||
// Read response
|
||||
let responseLength = null;
|
||||
let responseData = Buffer.alloc(0);
|
||||
let expecting = 'length';
|
||||
|
||||
const onData = (data) => {
|
||||
responseData = Buffer.concat([responseData, data]);
|
||||
|
||||
if (expecting === 'length' && responseData.length >= 4) {
|
||||
responseLength = responseData.readUInt32BE(0);
|
||||
responseData = responseData.slice(4);
|
||||
expecting = 'data';
|
||||
}
|
||||
|
||||
if (expecting === 'data' && responseData.length >= responseLength) {
|
||||
const jsonData = responseData.slice(0, responseLength);
|
||||
this.pythonProcess.stdout.removeListener('data', onData);
|
||||
|
||||
try {
|
||||
const result = JSON.parse(jsonData.toString());
|
||||
resolve(result);
|
||||
} catch (error) {
|
||||
reject(error);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
this.pythonProcess.stdout.on('data', onData);
|
||||
|
||||
// Timeout after 10 seconds
|
||||
setTimeout(() => {
|
||||
this.pythonProcess.stdout.removeListener('data', onData);
|
||||
reject(new Error('Speech processing timeout'));
|
||||
}, 10000);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
const speechProcessor = new SpeechProcessor();
|
||||
|
||||
wss.on('connection', (ws) => {
|
||||
console.log('Client connected');
|
||||
|
||||
ws.on('message', async (data) => {
|
||||
try {
|
||||
if (Buffer.isBuffer(data)) {
|
||||
// Raw audio data received
|
||||
const result = await speechProcessor.processAudio(data);
|
||||
|
||||
if (result.success && result.text) {
|
||||
ws.send(JSON.stringify({
|
||||
type: 'transcription',
|
||||
text: result.text
|
||||
}));
|
||||
console.log('Transcription:', result.text);
|
||||
} else if (!result.success) {
|
||||
console.error('STT Error:', result.error);
|
||||
ws.send(JSON.stringify({
|
||||
type: 'error',
|
||||
message: result.error
|
||||
}));
|
||||
}
|
||||
} else {
|
||||
// JSON message received
|
||||
const message = JSON.parse(data);
|
||||
console.log('Received message:', message);
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Error processing message:', error);
|
||||
ws.send(JSON.stringify({
|
||||
type: 'error',
|
||||
message: 'Error processing audio'
|
||||
}));
|
||||
}
|
||||
});
|
||||
|
||||
ws.on('close', () => {
|
||||
console.log('Client disconnected');
|
||||
});
|
||||
|
||||
ws.on('error', (error) => {
|
||||
console.error('WebSocket error:', error);
|
||||
});
|
||||
});
|
|
@ -0,0 +1,122 @@
|
|||
#!/usr/bin/env python3
|
||||
import vosk
|
||||
import sys
|
||||
import json
|
||||
import tempfile
|
||||
import os
|
||||
import wave
|
||||
import soundfile as sf
|
||||
|
||||
# Global model - load once
|
||||
model = None
|
||||
recognizer = None
|
||||
|
||||
def initialize_vosk():
|
||||
"""Initialize Vosk model"""
|
||||
global model, recognizer
|
||||
|
||||
model_path = "/app/vosk-model"
|
||||
if not os.path.exists(model_path):
|
||||
return {"success": False, "error": "Vosk model not found at /app/vosk-model"}
|
||||
|
||||
try:
|
||||
vosk.SetLogLevel(-1) # Reduce log verbosity
|
||||
model = vosk.Model(model_path)
|
||||
recognizer = vosk.KaldiRecognizer(model, 16000)
|
||||
return {"success": True}
|
||||
except Exception as e:
|
||||
return {"success": False, "error": f"Failed to initialize Vosk: {str(e)}"}
|
||||
|
||||
def process_audio_chunk(audio_data):
|
||||
"""Process audio data and return transcription"""
|
||||
global recognizer
|
||||
|
||||
if not recognizer:
|
||||
init_result = initialize_vosk()
|
||||
if not init_result["success"]:
|
||||
return init_result
|
||||
|
||||
try:
|
||||
# Write audio data to temporary file
|
||||
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file:
|
||||
temp_file.write(audio_data)
|
||||
temp_filename = temp_file.name
|
||||
|
||||
# Read audio file with soundfile
|
||||
try:
|
||||
audio_data, sample_rate = sf.read(temp_filename)
|
||||
|
||||
# Convert to 16-bit PCM at 16kHz if needed
|
||||
if sample_rate != 16000:
|
||||
# Simple resampling (for better quality, use librosa)
|
||||
import numpy as np
|
||||
audio_data = np.interp(
|
||||
np.linspace(0, len(audio_data), int(len(audio_data) * 16000 / sample_rate)),
|
||||
np.arange(len(audio_data)),
|
||||
audio_data
|
||||
)
|
||||
|
||||
# Convert to bytes
|
||||
audio_bytes = (audio_data * 32767).astype('int16').tobytes()
|
||||
|
||||
# Process with Vosk
|
||||
if recognizer.AcceptWaveform(audio_bytes):
|
||||
result = json.loads(recognizer.Result())
|
||||
text = result.get('text', '')
|
||||
else:
|
||||
result = json.loads(recognizer.PartialResult())
|
||||
text = result.get('partial', '')
|
||||
|
||||
# Clean up
|
||||
os.unlink(temp_filename)
|
||||
|
||||
return {"success": True, "text": text}
|
||||
|
||||
except Exception as e:
|
||||
os.unlink(temp_filename)
|
||||
return {"success": False, "error": f"Audio processing error: {str(e)}"}
|
||||
|
||||
except Exception as e:
|
||||
return {"success": False, "error": f"General error: {str(e)}"}
|
||||
|
||||
def main():
|
||||
"""Main loop to process audio chunks from stdin"""
|
||||
# Initialize Vosk on startup
|
||||
init_result = initialize_vosk()
|
||||
if not init_result["success"]:
|
||||
error_response = json.dumps(init_result).encode('utf-8')
|
||||
sys.stdout.buffer.write(len(error_response).to_bytes(4, byteorder='big'))
|
||||
sys.stdout.buffer.write(error_response)
|
||||
sys.stdout.buffer.flush()
|
||||
sys.exit(1)
|
||||
|
||||
while True:
|
||||
try:
|
||||
# Read length of incoming data
|
||||
length_data = sys.stdin.buffer.read(4)
|
||||
if not length_data:
|
||||
break
|
||||
|
||||
length = int.from_bytes(length_data, byteorder='big')
|
||||
|
||||
# Read audio data
|
||||
audio_data = sys.stdin.buffer.read(length)
|
||||
|
||||
# Process audio
|
||||
result = process_audio_chunk(audio_data)
|
||||
|
||||
# Send result back
|
||||
response = json.dumps(result).encode('utf-8')
|
||||
sys.stdout.buffer.write(len(response).to_bytes(4, byteorder='big'))
|
||||
sys.stdout.buffer.write(response)
|
||||
sys.stdout.buffer.flush()
|
||||
|
||||
except Exception as e:
|
||||
error_result = {"success": False, "error": str(e)}
|
||||
response = json.dumps(error_result).encode('utf-8')
|
||||
sys.stdout.buffer.write(len(response).to_bytes(4, byteorder='big'))
|
||||
sys.stdout.buffer.write(response)
|
||||
sys.stdout.buffer.flush()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue