This commit is contained in:
Kar
2025-06-17 15:53:01 +05:30
commit 4d20931ecc
411 changed files with 180695 additions and 0 deletions

View File

@@ -0,0 +1 @@
audio.mp3

View File

@@ -0,0 +1,8 @@
if (WHISPER_SDL2)
# talk
set(TARGET talk)
add_executable(${TARGET} talk.cpp gpt-2.cpp)
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
include(DefaultTargetOptions)
endif ()

View File

@@ -0,0 +1,41 @@
# talk
Talk with an Artificial Intelligence in your terminal
[Demo Talk](https://user-images.githubusercontent.com/1991296/206805012-48e71cc2-588d-4745-8798-c1c70ea3b40d.mp4)
Web version: [examples/talk.wasm](/examples/talk.wasm)
## Building
The `talk` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash
# Install SDL2 on Linux
sudo apt-get install libsdl2-dev
# Install SDL2 on Mac OS
brew install sdl2
# Build the "talk" executable
make talk
# Run it
./talk -p Santa
```
## GPT-2
To run this, you will need a ggml GPT-2 model: [instructions](https://github.com/ggerganov/ggml/tree/master/examples/gpt-2#downloading-and-converting-the-original-models)
Alternatively, you can simply download the smallest ggml GPT-2 117M model (240 MB) like this:
```
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://huggingface.co/ggerganov/ggml/resolve/main/ggml-model-gpt-2-117M.bin
```
## TTS
For best experience, this example needs a TTS tool to convert the generated text responses to voice.
You can use any TTS engine that you would like - simply edit the [speak](speak) script to your needs.
By default, it is configured to use MacOS's `say` or `espeak` or Windows SpeechSynthesizer, but you can use whatever you wish.

View File

@@ -0,0 +1,20 @@
import sys
import importlib.util
if importlib.util.find_spec("elevenlabs") is None:
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
sys.exit()
from elevenlabs import generate, play, save
# Get a Voice object, by name or UUID
voice = "Arnold" #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
# Generate the TTS
audio = generate(
text=str(sys.argv[2:]),
voice=voice
)
# Save the TTS to a file
save(audio, "audio.mp3")

View File

@@ -0,0 +1,810 @@
#include "ggml.h"
#include "common-ggml.h"
#include "gpt-2.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <thread>
#include <vector>
#include <regex>
#include <random>
/////////////////////// GPT-2 BEGIN /////////////////////////
// default hparams (GPT-2 117M)
struct gpt2_hparams {
int32_t n_vocab = 50257;
int32_t n_ctx = 1024;
int32_t n_embd = 768;
int32_t n_head = 12;
int32_t n_layer = 12;
int32_t ftype = 1;
};
struct gpt2_layer {
// normalization
struct ggml_tensor * ln_1_g;
struct ggml_tensor * ln_1_b;
struct ggml_tensor * ln_2_g;
struct ggml_tensor * ln_2_b;
// attention
struct ggml_tensor * c_attn_attn_w;
struct ggml_tensor * c_attn_attn_b;
struct ggml_tensor * c_attn_proj_w;
struct ggml_tensor * c_attn_proj_b;
// mlp
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
struct gpt2_model {
gpt2_hparams hparams;
// normalization
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * wpe; // token embedding
struct ggml_tensor * lm_head; // language model head
std::vector<gpt2_layer> layers;
// key + value memory
struct ggml_tensor * memory_k;
struct ggml_tensor * memory_v;
//
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
// load the model's weights from a file
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto & hparams = model.hparams;
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
}
// load vocab
{
int32_t n_vocab = 0;
fin.read((char *) &n_vocab, sizeof(n_vocab));
if (n_vocab != model.hparams.n_vocab) {
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
return false;
}
char word[129];
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
fin.read((char *) &len, sizeof(len));
word[len] = '\0';
fin.read((char *) word, len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return false;
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
ctx_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
ctx_size += (6 + 12*n_layer)*256; // object overhead
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
// create the ggml context
{
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
// map by name
model.tensors["model/ln_f/g"] = model.ln_f_g;
model.tensors["model/ln_f/b"] = model.ln_f_b;
model.tensors["model/wte"] = model.wte;
model.tensors["model/wpe"] = model.wpe;
model.tensors["model/lm_head"] = model.lm_head;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
}
}
// key + value memory
{
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_mem = n_layer*n_ctx;
const int n_elements = n_embd*n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
}
// load weights
{
size_t total_size = 0;
bool has_lm_head = false;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
// GPT-2 models share the WTE tensor as the LM head
if (name == "model/wte" && has_lm_head == false) {
memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor));
}
if (name == "model/lm_head") {
has_lm_head = true;
}
total_size += ggml_nbytes(tensor);
}
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
}
fin.close();
return true;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
// TODO: sync latest version from ggml repo
bool gpt2_eval(
const gpt2_model & model,
const int n_threads,
const int n_past,
const std::vector<gpt_vocab::id> & embd_inp,
std::vector<float> & embd_w,
size_t & mem_per_token) {
const int N = embd_inp.size();
const auto & hparams = model.hparams;
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
static size_t buf_size = 512u*1024*1024;
static void * buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
return false;
}
}
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
for (int i = 0; i < N; ++i) {
((int32_t *) position->data)[i] = n_past + i;
}
// wte + wpe
struct ggml_tensor * inpL =
ggml_add(ctx0,
ggml_get_rows(ctx0, model.wte, embd),
ggml_get_rows(ctx0, model.wpe, position));
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * cur;
// norm
{
// [ 768, N]
cur = ggml_norm(ctx0, inpL, 1e-5f);
// cur = ln_1_g*cur + ln_1_b
// [ 768, N]
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
}
// attn
// [2304, 768] - model.layers[il].c_attn_attn_w
// [2304, 1] - model.layers[il].c_attn_attn_b
// [ 768, N] - cur (in)
// [2304, N] - cur (out)
//
// cur = attn_w*cur + attn_b
// [2304, N]
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_attn_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
cur);
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
// store key and value to memory
if (N >= 1) {
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
// [64, N, 12]
struct ggml_tensor * Q =
ggml_permute(ctx0,
ggml_cpy(ctx0,
Qcur,
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
0, 2, 1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
// [64, n_past + N, 12]
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
// GG: flash attention
//struct ggml_tensor * V =
// ggml_cpy(ctx0,
// ggml_permute(ctx0,
// ggml_reshape_3d(ctx0,
// ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
// n_embd/n_head, n_head, n_past + N),
// 1, 2, 0, 3),
// ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));
//struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
// K * Q
// [n_past + N, N, 12]
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// [n_past + N, N, 12]
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
);
// KQ_masked = mask_past(KQ_scaled)
// [n_past + N, N, 12]
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
// KQ = soft_max(KQ_masked)
// [n_past + N, N, 12]
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
// [n_past + N, 64, 12]
struct ggml_tensor * V_trans =
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
// [64, N, 12]
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
// [64, 12, N]
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
// [768, N]
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
}
// projection
// [ 768, 768] - model.layers[il].c_attn_proj_w
// [ 768, 1] - model.layers[il].c_attn_proj_b
// [ 768, N] - cur (in)
// [ 768, N] - cur (out)
//
// cur = proj_w*cur + proj_b
// [768, N]
{
cur = ggml_mul_mat(ctx0,
model.layers[il].c_attn_proj_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
cur);
}
// add the input
cur = ggml_add(ctx0, cur, inpL);
struct ggml_tensor * inpFF = cur;
// feed-forward network
{
// norm
{
cur = ggml_norm(ctx0, inpFF, 1e-5f);
// cur = ln_2_g*cur + ln_2_b
// [ 768, N]
cur = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
cur),
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
}
// fully connected
// [3072, 768] - model.layers[il].c_mlp_fc_w
// [3072, 1] - model.layers[il].c_mlp_fc_b
// [ 768, N] - cur (in)
// [3072, N] - cur (out)
//
// cur = fc_w*cur + fc_b
// [3072, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_fc_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
cur);
// GELU activation
// [3072, N]
cur = ggml_gelu(ctx0, cur);
// projection
// [ 768, 3072] - model.layers[il].c_mlp_proj_w
// [ 768, 1] - model.layers[il].c_mlp_proj_b
// [3072, N] - cur (in)
// [ 768, N] - cur (out)
//
// cur = proj_w*cur + proj_b
// [768, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
cur);
}
// input for next layer
inpL = ggml_add(ctx0, cur, inpFF);
}
// norm
{
// [ 768, N]
inpL = ggml_norm(ctx0, inpL, 1e-5f);
// inpL = ln_f_g*inpL + ln_f_b
// [ 768, N]
inpL = ggml_add(ctx0,
ggml_mul(ctx0,
ggml_repeat(ctx0, model.ln_f_g, inpL),
inpL),
ggml_repeat(ctx0, model.ln_f_b, inpL));
}
// inpL = WTE * inpL
// [ 768, 50257] - model.lm_head
// [ 768, N] - inpL
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
// logits -> probs
//inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand (&gf, inpL);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result just for the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
/////////////////////////////// GPT-2 END ////////////////////////////////
constexpr int N_THREAD = 8;
struct gpt2_context {
std::string prompt_base = R"(Hello, how are you?
I'm fine, thanks. How are you?
Thanks, I'm fine too. What are you doing?
I'm just sitting here.
It's a lovely day, isn't it?
Yes, it is. I love the weather this time of year.
I wish it would rain a little bit.
Me too.
)";
std::mt19937 rng;
gpt_vocab vocab;
gpt2_model model;
int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
// sampling parameters
int32_t top_k = 5;
float top_p = 0.9f;
float temp = 1.0f;
};
struct gpt2_context * gpt2_init(const char * path_model) {
gpt2_context * ctx = new gpt2_context;
ctx->rng = std::mt19937(time(nullptr));
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
delete ctx;
return nullptr;
}
const int64_t t_load_us = ggml_time_us() - t_start_us;
printf("gpt-2: model loaded in %d ms\n", (int) (t_load_us/1000));
}
return ctx;
}
void gpt2_free(struct gpt2_context * ctx) {
delete ctx;
}
const char * gpt2_get_prompt(struct gpt2_context * ctx) {
return ctx->prompt_base.c_str();
}
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt) {
ctx->prompt_base = prompt;
}
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text) {
return ::gpt_tokenize(ctx->vocab, text);
}
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens) {
int n_past = 0;
std::vector<float> embd_w;
// tokenize the prompt
std::vector<gpt_vocab::id> embd_inp = ::gpt2_tokenize(ctx, text);
int n_predict = std::min(max_tokens, ctx->model.hparams.n_ctx - (int) embd_inp.size());
std::vector<gpt_vocab::id> embd = embd_inp;
size_t mem_per_token = 3000000;
std::string result;
for (int i = embd.size(); i < (int) embd_inp.size() + n_predict; i++) {
// predict
if (!embd.empty()) {
if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) {
printf("gpt-2: failed to generate text\n");
return "";
}
}
n_past += embd.size();
embd.clear();
{
// sample next token
const int top_k = ctx->top_k;
const float top_p = ctx->top_p;
const float temp = ctx->temp;
const int n_vocab = ctx->model.hparams.n_vocab;
const gpt_vocab::id id = gpt_sample_top_k_top_p(ctx->vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, ctx->rng);
// add it to the context
embd.push_back(id);
}
result += ctx->vocab.id_to_token[embd[0]];
// end of text token
if (embd.back() == 50256) {
break;
}
}
return result;
}

View File

@@ -0,0 +1,21 @@
#pragma once
// TODO: Change to C-style API and move to ./examples for easy reuse.
#include "common.h"
#include <vector>
#include <map>
#include <string>
struct gpt2_context;
struct gpt2_context * gpt2_init(const char * path_model);
void gpt2_free(struct gpt2_context * ctx);
const char * gpt2_get_prompt(struct gpt2_context * ctx);
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt);
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text);
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens);

View File

@@ -0,0 +1,24 @@
#!/bin/bash
# Usage:
# speak.sh <voice_id> <text-to-speak>
# espeak
# Mac OS: brew install espeak
# Linux: apt-get install espeak
#
#espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
# Mac OS "say" command
say "$2"
# Eleven Labs
# To use it, install the elevenlabs module from pip (pip install elevenlabs)
# It's possible to use the API for free with limited number of characters. To increase this limit register to https://beta.elevenlabs.io to get an api key and paste it after 'ELEVEN_API_KEY='
#Keep the line commented to use the free version without api key
#
#export ELEVEN_API_KEY=your_api_key
#wd=$(dirname $0)
#script=$wd/eleven-labs.py
#python3 $script $1 "$2"
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3

View File

@@ -0,0 +1 @@
@powershell -ExecutionPolicy Bypass -F examples\talk\speak.ps1 %1 %2

View File

@@ -0,0 +1,12 @@
# Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope CurrentUser
param(
# voice options are David or Zira
[Parameter(Mandatory=$true)][string]$voice,
[Parameter(Mandatory=$true)][string]$text
)
Add-Type -AssemblyName System.Speech;
$speak = New-Object System.Speech.Synthesis.SpeechSynthesizer;
$speak.SelectVoice("Microsoft $voice Desktop");
$speak.Rate="0";
$speak.Speak($text);

View File

@@ -0,0 +1,375 @@
// Talk with AI
//
#include "common-sdl.h"
#include "common.h"
#include "whisper.h"
#include "gpt-2.h"
#include <cassert>
#include <cstdio>
#include <fstream>
#include <regex>
#include <string>
#include <thread>
#include <vector>
#include <regex>
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t voice_ms = 10000;
int32_t capture_id = -1;
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
bool use_gpu = true;
std::string person = "Santa";
std::string language = "en";
std::string model_wsp = "models/ggml-base.en.bin";
std::string model_gpt = "models/ggml-gpt-2-117M.bin";
std::string speak = "./examples/talk/speak";
std::string fname_out;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-h" || arg == "--help") {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
else if (arg == "-mg" || arg == "--model-gpt") { params.model_gpt = argv[++i]; }
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
fprintf(stderr, " -mg FILE, --model-gpt [%-7s] gpt model file\n", params.model_gpt.c_str());
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
prob = 0.0f;
t_ms = 0;
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.print_progress = false;
wparams.print_special = params.print_special;
wparams.print_realtime = false;
wparams.print_timestamps = !params.no_timestamps;
wparams.translate = params.translate;
wparams.no_context = true;
wparams.single_segment = true;
wparams.max_tokens = params.max_tokens;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
return "";
}
int prob_n = 0;
std::string result;
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
result += text;
const int n_tokens = whisper_full_n_tokens(ctx, i);
for (int j = 0; j < n_tokens; ++j) {
const auto token = whisper_full_get_token_data(ctx, i, j);
prob += token.p;
++prob_n;
}
}
if (prob_n > 0) {
prob /= prob_n;
}
const auto t_end = std::chrono::high_resolution_clock::now();
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
return result;
}
const std::string k_prompt =
R"(This is a dialogue between {0} (A) and a person (B). The dialogue so far is:
B: Hello {0}, how are you?
A: I'm fine, thank you.
{1}
Here is how {0} (A) continues the dialogue:
A:)";
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
return 1;
}
if (whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
// whisper init
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);
// gpt init
struct gpt2_context * ctx_gpt = gpt2_init(params.model_gpt.c_str());
// print some info about the processing
{
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx_wsp)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
__func__,
params.n_threads,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1);
fprintf(stderr, "\n");
}
// init audio
audio_async audio(30*1000);
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
return 1;
}
audio.resume();
int n_iter = 0;
bool is_running = true;
bool force_speak = false;
float prob0 = 0.0f;
std::vector<float> pcmf32_cur;
std::vector<float> pcmf32_prompt;
gpt2_set_prompt(ctx_gpt, "");
const int voice_id = rand()%6;
fprintf(stderr, "gpt-2: prompt:\n");
fprintf(stderr, "========================\n\n");
fprintf(stderr, "%s\n", ::replace(k_prompt, "{0}", params.person).c_str());
fprintf(stderr, "========================\n\n");
// main loop
while (is_running) {
// handle Ctrl + C
is_running = sdl_poll_events();
if (!is_running) {
break;
}
// delay
std::this_thread::sleep_for(std::chrono::milliseconds(100));
int64_t t_ms = 0;
{
audio.get(2000, pcmf32_cur);
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
audio.get(params.voice_ms, pcmf32_cur);
std::string text_heard;
if (!force_speak) {
text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prob0, t_ms));
}
// remove text between brackets using regex
{
std::regex re("\\[.*?\\]");
text_heard = std::regex_replace(text_heard, re, "");
}
// remove text between brackets using regex
{
std::regex re("\\(.*?\\)");
text_heard = std::regex_replace(text_heard, re, "");
}
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
// take first line
text_heard = text_heard.substr(0, text_heard.find_first_of('\n'));
// remove leading and trailing whitespace
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
const std::vector<gpt_vocab::id> tokens = gpt2_tokenize(ctx_gpt, text_heard.c_str());
if (text_heard.empty() || tokens.empty() || force_speak) {
fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__);
audio.clear();
continue;
}
force_speak = false;
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", text_heard.c_str(), "\033[0m", (int) t_ms);
std::string prompt_base = gpt2_get_prompt(ctx_gpt);
std::string text_to_speak;
{
prompt_base += "B: " + text_heard + "\n";
std::string prompt = ::replace(::replace(k_prompt, "{0}", params.person), "{1}", prompt_base);
text_to_speak = gpt2_gen_text(ctx_gpt, prompt.c_str(), params.max_tokens);
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of('\n'));
// remove first 2 lines of base prompt
if (n_iter > 4) {
{
const size_t pos = prompt_base.find_first_of('\n');
if (pos != std::string::npos) {
prompt_base = prompt_base.substr(pos + 1);
}
}
{
const size_t pos = prompt_base.find_first_of('\n');
if (pos != std::string::npos) {
prompt_base = prompt_base.substr(pos + 1);
}
}
}
prompt_base += "A:" + text_to_speak + "\n";
{
prompt = ::replace(::replace(k_prompt, "{0}", params.person), "{1}", prompt_base);
printf("===============\n");
printf("prompt:\n");
printf("%s\n", prompt.c_str());
printf("===============\n");
}
}
//printf("========================\n");
//printf("gpt-2: prompt_base:\n%s\n", prompt_base.c_str());
//printf("========================\n");
gpt2_set_prompt(ctx_gpt, prompt_base.c_str());
text_to_speak = ::replace(text_to_speak, params.person + ": ", "");
int ret = system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
if (ret != 0) {
fprintf(stderr, "%s: system() failed!\n", __func__);
}
audio.clear();
++n_iter;
}
}
}
audio.pause();
whisper_print_timings(ctx_wsp);
whisper_free(ctx_wsp);
return 0;
}