init
This commit is contained in:
51
whisper.cpp-1.5.2/examples/talk.wasm/CMakeLists.txt
Normal file
51
whisper.cpp-1.5.2/examples/talk.wasm/CMakeLists.txt
Normal file
@@ -0,0 +1,51 @@
|
||||
#
|
||||
# libtalk
|
||||
#
|
||||
|
||||
set(TARGET libtalk)
|
||||
|
||||
add_executable(${TARGET}
|
||||
emscripten.cpp
|
||||
gpt-2.cpp
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE
|
||||
whisper
|
||||
common
|
||||
)
|
||||
|
||||
unset(EXTRA_FLAGS)
|
||||
|
||||
if (WHISPER_WASM_SINGLE_FILE)
|
||||
set(EXTRA_FLAGS "-s SINGLE_FILE=1")
|
||||
message(STATUS "Embedding WASM inside talk.js")
|
||||
|
||||
add_custom_command(
|
||||
TARGET ${TARGET} POST_BUILD
|
||||
COMMAND ${CMAKE_COMMAND} -E copy
|
||||
${CMAKE_BINARY_DIR}/bin/libtalk.js
|
||||
${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/talk.wasm/talk.js
|
||||
)
|
||||
endif()
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
|
||||
--bind \
|
||||
-s USE_PTHREADS=1 \
|
||||
-s PTHREAD_POOL_SIZE=8 \
|
||||
-s INITIAL_MEMORY=1800MB \
|
||||
-s TOTAL_MEMORY=1800MB \
|
||||
-s FORCE_FILESYSTEM=1 \
|
||||
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
|
||||
${EXTRA_FLAGS} \
|
||||
")
|
||||
|
||||
#
|
||||
# talk.wasm
|
||||
#
|
||||
|
||||
set(TARGET talk.wasm)
|
||||
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/index-tmpl.html ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/index.html @ONLY)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/../helpers.js ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${TARGET}/helpers.js @ONLY)
|
||||
74
whisper.cpp-1.5.2/examples/talk.wasm/README.md
Normal file
74
whisper.cpp-1.5.2/examples/talk.wasm/README.md
Normal file
@@ -0,0 +1,74 @@
|
||||
# talk.wasm
|
||||
|
||||
Talk with an Artificial Intelligence in your browser:
|
||||
|
||||
[https://user-images.githubusercontent.com/1991296/203411580-fedb4839-05e4-4474-8364-aaf1e9a9b615.mp4](https://user-images.githubusercontent.com/1991296/203845553-f7b44e13-9a15-4fc8-b518-ae8f4c6770fe.mp4)
|
||||
|
||||
Online demo: https://whisper.ggerganov.com/talk/
|
||||
|
||||
Terminal version: [examples/talk](/examples/talk)
|
||||
|
||||
## How it works?
|
||||
|
||||
This demo leverages 2 modern neural network models to create a high-quality voice chat directly in your browser:
|
||||
|
||||
- [OpenAI's Whisper](https://github.com/openai/whisper) speech recognition model is used to process your voice and understand what you are saying
|
||||
- Upon receiving some voice input, the AI generates a text response using [OpenAI's GPT-2](https://github.com/openai/gpt-2) language model
|
||||
- The AI then vocalizes the response using the browser's [Web Speech API](https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API)
|
||||
|
||||
The web page does the processing locally on your machine. The processing of these heavy neural network models in the
|
||||
browser is possible by implementing them efficiently in C/C++ and using the browser's WebAssembly SIMD capabilities for
|
||||
extra performance:
|
||||
|
||||
- The Whisper C++ implementation is here: [whisper.h](/whisper.h) / [whisper.cpp](/whisper.cpp)
|
||||
- The GPT-2 C++ implementation is here: [gpt-2.h](gpt-2.h) / [gpt-2.cpp](gpt-2.cpp)
|
||||
- Both models use a custom tensor library implemented in C: [ggml.h](/ggml.h) / [ggml.c](/ggml.c)
|
||||
- The HTML/JS layer is here: [index-tmpl.html](index-tmpl.html)
|
||||
- The Emscripten bridge between C/C++ and JS is here: [emscripten.cpp](emscripten.cpp)
|
||||
|
||||
In order to run the models, the web page first needs to download the model data which is about ~350 MB. The model data
|
||||
is then cached in your browser's cache and can be reused in future visits without downloading it again.
|
||||
|
||||
## Requirements
|
||||
|
||||
In order to run this demo efficiently, you need to have the following:
|
||||
|
||||
- Latest Chrome or Firefox browser (Safari is not supported)
|
||||
- Run this on a desktop or laptop with modern CPU (a mobile phone will likely not be good enough)
|
||||
- Speak phrases that are no longer than 10 seconds - this is the audio context of the AI
|
||||
- The web-page uses about 1.8GB of RAM
|
||||
|
||||
Notice that this demo is using the smallest GPT-2 model, so the generated text responses are not always very good.
|
||||
Also, the prompting strategy can likely be improved to achieve better results.
|
||||
|
||||
The demo is quite computationally heavy, so you need a fast CPU. It's not usual to run these transformer models in a
|
||||
browser. Typically, they run on powerful GPUs.
|
||||
|
||||
Currently, mobile browsers do not support the Fixed-width SIMD WebAssembly capability, so you cannot run this demo
|
||||
on a phone or a tablet. Hopefully, in the near future this will become supported.
|
||||
|
||||
## Todo
|
||||
|
||||
- Better UI (contributions are welcome)
|
||||
- Better GPT-2 prompting
|
||||
|
||||
## Build instructions
|
||||
|
||||
```bash
|
||||
# build using Emscripten (v3.1.2)
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
cd whisper.cpp
|
||||
mkdir build-em && cd build-em
|
||||
emcmake cmake ..
|
||||
make -j
|
||||
|
||||
# copy the produced page to your HTTP path
|
||||
cp bin/talk.wasm/* /path/to/html/
|
||||
cp bin/libtalk.worker.js /path/to/html/
|
||||
```
|
||||
|
||||
## Feedback
|
||||
|
||||
If you have any comments or ideas for improvement, please drop a comment in the following discussion:
|
||||
|
||||
https://github.com/ggerganov/whisper.cpp/discussions/167
|
||||
380
whisper.cpp-1.5.2/examples/talk.wasm/emscripten.cpp
Normal file
380
whisper.cpp-1.5.2/examples/talk.wasm/emscripten.cpp
Normal file
@@ -0,0 +1,380 @@
|
||||
#include "ggml.h"
|
||||
#include "gpt-2.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <emscripten.h>
|
||||
#include <emscripten/bind.h>
|
||||
|
||||
#include <atomic>
|
||||
#include <cmath>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
|
||||
constexpr int N_THREAD = 8;
|
||||
|
||||
struct gpt2_context * g_gpt2;
|
||||
std::vector<struct whisper_context *> g_contexts(4, nullptr);
|
||||
|
||||
std::mutex g_mutex;
|
||||
std::thread g_worker;
|
||||
std::atomic<bool> g_running(false);
|
||||
|
||||
bool g_force_speak = false;
|
||||
std::string g_text_to_speak = "";
|
||||
std::string g_status = "";
|
||||
std::string g_status_forced = "";
|
||||
|
||||
std::vector<float> g_pcmf32;
|
||||
|
||||
std::string to_timestamp(int64_t t) {
|
||||
int64_t sec = t/100;
|
||||
int64_t msec = t - sec*100;
|
||||
int64_t min = sec/60;
|
||||
sec = sec - min*60;
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
|
||||
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
void talk_set_status(const std::string & status) {
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_status = status;
|
||||
}
|
||||
|
||||
void talk_main(size_t index) {
|
||||
talk_set_status("loading data ...");
|
||||
|
||||
struct whisper_full_params wparams = whisper_full_default_params(whisper_sampling_strategy::WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
wparams.n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
wparams.offset_ms = 0;
|
||||
wparams.translate = false;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_progress = false;
|
||||
wparams.print_timestamps = true;
|
||||
wparams.print_special = false;
|
||||
|
||||
wparams.max_tokens = 32;
|
||||
wparams.audio_ctx = 768; // partial encoder context for better performance
|
||||
|
||||
wparams.language = "en";
|
||||
|
||||
g_gpt2 = gpt2_init("gpt-2.bin");
|
||||
|
||||
printf("talk: using %d threads\n", wparams.n_threads);
|
||||
|
||||
std::vector<float> pcmf32;
|
||||
|
||||
// whisper context
|
||||
auto & ctx = g_contexts[index];
|
||||
|
||||
const int64_t step_samples = 2*WHISPER_SAMPLE_RATE;
|
||||
const int64_t window_samples = 9*WHISPER_SAMPLE_RATE;
|
||||
const int64_t step_ms = (step_samples*1000)/WHISPER_SAMPLE_RATE;
|
||||
|
||||
auto t_last = std::chrono::high_resolution_clock::now();
|
||||
|
||||
talk_set_status("listening ...");
|
||||
|
||||
while (g_running) {
|
||||
|
||||
const auto t_now = std::chrono::high_resolution_clock::now();
|
||||
if (std::chrono::duration_cast<std::chrono::milliseconds>(t_now - t_last).count() < step_ms) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_pcmf32.clear();
|
||||
}
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
continue;
|
||||
}
|
||||
|
||||
talk_set_status("listening ...");
|
||||
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(g_mutex);
|
||||
|
||||
if (g_pcmf32.size() < step_samples) {
|
||||
lock.unlock();
|
||||
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
pcmf32 = std::vector<float>(g_pcmf32.end() - std::min((int64_t) g_pcmf32.size(), window_samples), g_pcmf32.end());
|
||||
}
|
||||
|
||||
// VAD: if energy in during last second is above threshold, then skip
|
||||
{
|
||||
float energy_all = 0.0f;
|
||||
float energy_1s = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < pcmf32.size(); i++) {
|
||||
energy_all += fabsf(pcmf32[i]);
|
||||
|
||||
if (i >= pcmf32.size() - WHISPER_SAMPLE_RATE) {
|
||||
energy_1s += fabsf(pcmf32[i]);
|
||||
}
|
||||
}
|
||||
|
||||
energy_all /= pcmf32.size();
|
||||
energy_1s /= WHISPER_SAMPLE_RATE;
|
||||
|
||||
if (energy_1s > 0.1f*energy_all && !g_force_speak) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
talk_set_status("processing audio (whisper)...");
|
||||
|
||||
t_last = t_now;
|
||||
|
||||
if (!g_force_speak) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
int ret = whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size());
|
||||
if (ret != 0) {
|
||||
printf("whisper_full() failed: %d\n", ret);
|
||||
break;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
|
||||
printf("whisper_full() returned %d in %f seconds\n", ret, std::chrono::duration<double>(t_end - t_start).count());
|
||||
}
|
||||
|
||||
{
|
||||
std::string text_heard;
|
||||
|
||||
if (!g_force_speak) {
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = n_segments - 1; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
printf ("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
|
||||
text_heard += text;
|
||||
}
|
||||
}
|
||||
|
||||
g_force_speak = false;
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\[.*?\\]");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\(.*?\\)");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
|
||||
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
|
||||
// take first line
|
||||
text_heard = text_heard.substr(0, text_heard.find_first_of("\n"));
|
||||
|
||||
// remove leading and trailing whitespace
|
||||
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
|
||||
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
|
||||
|
||||
talk_set_status("'" + text_heard + "' - thinking how to respond (gpt-2) ...");
|
||||
|
||||
const std::vector<gpt_vocab::id> tokens = gpt2_tokenize(g_gpt2, text_heard.c_str());
|
||||
|
||||
printf("whisper: number of tokens: %d, '%s'\n", (int) tokens.size(), text_heard.c_str());
|
||||
|
||||
std::string text_to_speak;
|
||||
std::string prompt_base;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
prompt_base = gpt2_get_prompt(g_gpt2);
|
||||
}
|
||||
|
||||
if (tokens.size() > 0) {
|
||||
text_to_speak = gpt2_gen_text(g_gpt2, (prompt_base + text_heard + "\n").c_str(), 32);
|
||||
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n"));
|
||||
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
|
||||
// remove first 2 lines of base prompt
|
||||
{
|
||||
const size_t pos = prompt_base.find_first_of("\n");
|
||||
if (pos != std::string::npos) {
|
||||
prompt_base = prompt_base.substr(pos + 1);
|
||||
}
|
||||
}
|
||||
{
|
||||
const size_t pos = prompt_base.find_first_of("\n");
|
||||
if (pos != std::string::npos) {
|
||||
prompt_base = prompt_base.substr(pos + 1);
|
||||
}
|
||||
}
|
||||
prompt_base += text_heard + "\n" + text_to_speak + "\n";
|
||||
} else {
|
||||
text_to_speak = gpt2_gen_text(g_gpt2, prompt_base.c_str(), 32);
|
||||
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n"));
|
||||
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
|
||||
const size_t pos = prompt_base.find_first_of("\n");
|
||||
if (pos != std::string::npos) {
|
||||
prompt_base = prompt_base.substr(pos + 1);
|
||||
}
|
||||
prompt_base += text_to_speak + "\n";
|
||||
}
|
||||
|
||||
printf("gpt-2: %s\n", text_to_speak.c_str());
|
||||
|
||||
//printf("========================\n");
|
||||
//printf("gpt-2: prompt_base:\n'%s'\n", prompt_base.c_str());
|
||||
//printf("========================\n");
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
t_last = std::chrono::high_resolution_clock::now();
|
||||
g_text_to_speak = text_to_speak;
|
||||
g_pcmf32.clear();
|
||||
gpt2_set_prompt(g_gpt2, prompt_base.c_str());
|
||||
}
|
||||
|
||||
talk_set_status("speaking ...");
|
||||
}
|
||||
}
|
||||
|
||||
gpt2_free(g_gpt2);
|
||||
|
||||
if (index < g_contexts.size()) {
|
||||
whisper_free(g_contexts[index]);
|
||||
g_contexts[index] = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
EMSCRIPTEN_BINDINGS(talk) {
|
||||
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
|
||||
for (size_t i = 0; i < g_contexts.size(); ++i) {
|
||||
if (g_contexts[i] == nullptr) {
|
||||
g_contexts[i] = whisper_init_from_file_with_params(path_model.c_str(), whisper_context_default_params());
|
||||
if (g_contexts[i] != nullptr) {
|
||||
g_running = true;
|
||||
if (g_worker.joinable()) {
|
||||
g_worker.join();
|
||||
}
|
||||
g_worker = std::thread([i]() {
|
||||
talk_main(i);
|
||||
});
|
||||
|
||||
return i + 1;
|
||||
} else {
|
||||
return (size_t) 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (size_t) 0;
|
||||
}));
|
||||
|
||||
emscripten::function("free", emscripten::optional_override([](size_t index) {
|
||||
if (g_running) {
|
||||
g_running = false;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("set_audio", emscripten::optional_override([](size_t index, const emscripten::val & audio) {
|
||||
--index;
|
||||
|
||||
if (index >= g_contexts.size()) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (g_contexts[index] == nullptr) {
|
||||
return -2;
|
||||
}
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
const int n = audio["length"].as<int>();
|
||||
|
||||
emscripten::val heap = emscripten::val::module_property("HEAPU8");
|
||||
emscripten::val memory = heap["buffer"];
|
||||
|
||||
g_pcmf32.resize(n);
|
||||
|
||||
emscripten::val memoryView = audio["constructor"].new_(memory, reinterpret_cast<uintptr_t>(g_pcmf32.data()), n);
|
||||
memoryView.call<void>("set", audio);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}));
|
||||
|
||||
emscripten::function("force_speak", emscripten::optional_override([](size_t index) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_force_speak = true;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("get_text_context", emscripten::optional_override([]() {
|
||||
std::string text_context;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
text_context = gpt2_get_prompt(g_gpt2);
|
||||
}
|
||||
|
||||
return text_context;
|
||||
}));
|
||||
|
||||
emscripten::function("get_text_to_speak", emscripten::optional_override([]() {
|
||||
std::string text_to_speak;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
text_to_speak = std::move(g_text_to_speak);
|
||||
}
|
||||
|
||||
return text_to_speak;
|
||||
}));
|
||||
|
||||
emscripten::function("get_status", emscripten::optional_override([]() {
|
||||
std::string status;
|
||||
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
status = g_status_forced.empty() ? g_status : g_status_forced;
|
||||
}
|
||||
|
||||
return status;
|
||||
}));
|
||||
|
||||
emscripten::function("set_status", emscripten::optional_override([](const std::string & status) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
g_status_forced = status;
|
||||
}
|
||||
}));
|
||||
|
||||
emscripten::function("set_prompt", emscripten::optional_override([](const std::string & prompt) {
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(g_mutex);
|
||||
gpt2_set_prompt(g_gpt2, prompt.c_str());
|
||||
}
|
||||
}));
|
||||
}
|
||||
809
whisper.cpp-1.5.2/examples/talk.wasm/gpt-2.cpp
Normal file
809
whisper.cpp-1.5.2/examples/talk.wasm/gpt-2.cpp
Normal file
@@ -0,0 +1,809 @@
|
||||
#include "ggml.h"
|
||||
#include "common-ggml.h"
|
||||
|
||||
#include "gpt-2.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
#include <random>
|
||||
|
||||
/////////////////////// GPT-2 BEGIN /////////////////////////
|
||||
|
||||
// default hparams (GPT-2 117M)
|
||||
struct gpt2_hparams {
|
||||
int32_t n_vocab = 50257;
|
||||
int32_t n_ctx = 1024;
|
||||
int32_t n_embd = 768;
|
||||
int32_t n_head = 12;
|
||||
int32_t n_layer = 12;
|
||||
int32_t ftype = 1;
|
||||
};
|
||||
|
||||
struct gpt2_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * ln_1_g;
|
||||
struct ggml_tensor * ln_1_b;
|
||||
|
||||
struct ggml_tensor * ln_2_g;
|
||||
struct ggml_tensor * ln_2_b;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * c_attn_attn_w;
|
||||
struct ggml_tensor * c_attn_attn_b;
|
||||
|
||||
struct ggml_tensor * c_attn_proj_w;
|
||||
struct ggml_tensor * c_attn_proj_b;
|
||||
|
||||
// mlp
|
||||
struct ggml_tensor * c_mlp_fc_w;
|
||||
struct ggml_tensor * c_mlp_fc_b;
|
||||
|
||||
struct ggml_tensor * c_mlp_proj_w;
|
||||
struct ggml_tensor * c_mlp_proj_b;
|
||||
};
|
||||
|
||||
struct gpt2_model {
|
||||
gpt2_hparams hparams;
|
||||
|
||||
// normalization
|
||||
struct ggml_tensor * ln_f_g;
|
||||
struct ggml_tensor * ln_f_b;
|
||||
|
||||
struct ggml_tensor * wte; // position embedding
|
||||
struct ggml_tensor * wpe; // token embedding
|
||||
struct ggml_tensor * lm_head; // language model head
|
||||
|
||||
std::vector<gpt2_layer> layers;
|
||||
|
||||
// key + value memory
|
||||
struct ggml_tensor * memory_k;
|
||||
struct ggml_tensor * memory_v;
|
||||
|
||||
//
|
||||
struct ggml_context * ctx;
|
||||
std::map<std::string, struct ggml_tensor *> tensors;
|
||||
};
|
||||
|
||||
// load the model's weights from a file
|
||||
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
|
||||
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
auto fin = std::ifstream(fname, std::ios::binary);
|
||||
if (!fin) {
|
||||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// verify magic
|
||||
{
|
||||
uint32_t magic;
|
||||
fin.read((char *) &magic, sizeof(magic));
|
||||
if (magic != 0x67676d6c) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// load hparams
|
||||
{
|
||||
auto & hparams = model.hparams;
|
||||
|
||||
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
||||
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
||||
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
||||
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
||||
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
||||
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
|
||||
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: ftype = %d\n", __func__, hparams.ftype);
|
||||
}
|
||||
|
||||
// load vocab
|
||||
{
|
||||
int32_t n_vocab = 0;
|
||||
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
||||
|
||||
if (n_vocab != model.hparams.n_vocab) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
||||
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string word;
|
||||
for (int i = 0; i < n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
}
|
||||
}
|
||||
|
||||
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
|
||||
// in order to save memory and also to speed up the computation
|
||||
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
|
||||
if (wtype == GGML_TYPE_COUNT) {
|
||||
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
|
||||
__func__, fname.c_str(), model.hparams.ftype);
|
||||
return false;
|
||||
}
|
||||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
|
||||
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
|
||||
|
||||
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
|
||||
ctx_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
|
||||
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
|
||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
|
||||
|
||||
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
|
||||
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
|
||||
|
||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
|
||||
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
|
||||
|
||||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
||||
|
||||
ctx_size += (6 + 12*n_layer)*256; // object overhead
|
||||
|
||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
||||
}
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
model.ctx = ggml_init(params);
|
||||
if (!model.ctx) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
model.layers.resize(n_layer);
|
||||
|
||||
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
||||
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/ln_f/g"] = model.ln_f_g;
|
||||
model.tensors["model/ln_f/b"] = model.ln_f_b;
|
||||
|
||||
model.tensors["model/wte"] = model.wte;
|
||||
model.tensors["model/wpe"] = model.wpe;
|
||||
model.tensors["model/lm_head"] = model.lm_head;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
|
||||
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
||||
|
||||
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
||||
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
|
||||
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
||||
|
||||
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
||||
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
// map by name
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
|
||||
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
|
||||
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
|
||||
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
|
||||
}
|
||||
}
|
||||
|
||||
// key + value memory
|
||||
{
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
|
||||
const int n_mem = n_layer*n_ctx;
|
||||
const int n_elements = n_embd*n_mem;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
|
||||
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
||||
|
||||
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
||||
}
|
||||
|
||||
// load weights
|
||||
{
|
||||
size_t total_size = 0;
|
||||
|
||||
bool has_lm_head = false;
|
||||
|
||||
while (true) {
|
||||
int32_t n_dims;
|
||||
int32_t length;
|
||||
int32_t ttype;
|
||||
|
||||
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
||||
|
||||
if (fin.eof()) {
|
||||
break;
|
||||
}
|
||||
|
||||
int32_t nelements = 1;
|
||||
int32_t ne[2] = { 1, 1 };
|
||||
for (int i = 0; i < n_dims; ++i) {
|
||||
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||
nelements *= ne[i];
|
||||
}
|
||||
|
||||
std::string name(length, 0);
|
||||
fin.read(&name[0], length);
|
||||
|
||||
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
||||
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
auto tensor = model.tensors[name.data()];
|
||||
if (ggml_nelements(tensor) != nelements) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
|
||||
return false;
|
||||
}
|
||||
|
||||
// for debugging
|
||||
if (0) {
|
||||
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
|
||||
}
|
||||
|
||||
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
||||
|
||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
||||
return false;
|
||||
}
|
||||
|
||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
||||
|
||||
// GPT-2 models share the WTE tensor as the LM head
|
||||
if (name == "model/wte" && has_lm_head == false) {
|
||||
memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor));
|
||||
}
|
||||
|
||||
if (name == "model/lm_head") {
|
||||
has_lm_head = true;
|
||||
}
|
||||
|
||||
total_size += ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
||||
}
|
||||
|
||||
fin.close();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// evaluate the transformer
|
||||
//
|
||||
// - model: the model
|
||||
// - n_threads: number of threads to use
|
||||
// - n_past: the context size so far
|
||||
// - embd_inp: the embeddings of the tokens in the context
|
||||
// - embd_w: the predicted logits for the next token
|
||||
//
|
||||
bool gpt2_eval(
|
||||
const gpt2_model & model,
|
||||
const int n_threads,
|
||||
const int n_past,
|
||||
const std::vector<gpt_vocab::id> & embd_inp,
|
||||
std::vector<float> & embd_w,
|
||||
size_t & mem_per_token) {
|
||||
const int N = embd_inp.size();
|
||||
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
static size_t buf_size = 512u*1024*1024;
|
||||
static void * buf = malloc(buf_size);
|
||||
|
||||
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
||||
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
||||
|
||||
// reallocate
|
||||
buf_size = buf_size_new;
|
||||
buf = realloc(buf, buf_size);
|
||||
if (buf == nullptr) {
|
||||
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ buf_size,
|
||||
/*.mem_buffer =*/ buf,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
struct ggml_cgraph gf = {};
|
||||
|
||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
||||
|
||||
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
for (int i = 0; i < N; ++i) {
|
||||
((int32_t *) position->data)[i] = n_past + i;
|
||||
}
|
||||
|
||||
// wte + wpe
|
||||
struct ggml_tensor * inpL =
|
||||
ggml_add(ctx0,
|
||||
ggml_get_rows(ctx0, model.wte, embd),
|
||||
ggml_get_rows(ctx0, model.wpe, position));
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
cur = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
|
||||
// cur = ln_1_g*cur + ln_1_b
|
||||
// [ 768, N]
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
||||
}
|
||||
|
||||
// attn
|
||||
// [2304, 768] - model.layers[il].c_attn_attn_w
|
||||
// [2304, 1] - model.layers[il].c_attn_attn_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [2304, N] - cur (out)
|
||||
//
|
||||
// cur = attn_w*cur + attn_b
|
||||
// [2304, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_attn_attn_w,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// self-attention
|
||||
{
|
||||
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
|
||||
|
||||
// store key and value to memory
|
||||
if (N >= 1) {
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
||||
}
|
||||
|
||||
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
||||
// [64, N, 12]
|
||||
struct ggml_tensor * Q =
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
Qcur,
|
||||
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
||||
// [64, n_past + N, 12]
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// GG: flash attention
|
||||
//struct ggml_tensor * V =
|
||||
// ggml_cpy(ctx0,
|
||||
// ggml_permute(ctx0,
|
||||
// ggml_reshape_3d(ctx0,
|
||||
// ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
// n_embd/n_head, n_head, n_past + N),
|
||||
// 1, 2, 0, 3),
|
||||
// ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));
|
||||
|
||||
//struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
|
||||
|
||||
// K * Q
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
|
||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_scaled =
|
||||
ggml_scale(ctx0,
|
||||
KQ,
|
||||
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
||||
);
|
||||
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||
|
||||
// KQ = soft_max(KQ_masked)
|
||||
// [n_past + N, N, 12]
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||
|
||||
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
||||
// [n_past + N, 64, 12]
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_cpy(ctx0,
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
||||
n_embd/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3),
|
||||
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head));
|
||||
|
||||
// KQV = transpose(V) * KQ_soft_max
|
||||
// [64, N, 12]
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
||||
|
||||
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
||||
// [64, 12, N]
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
// cur = KQV_merged.contiguous().view(n_embd, N)
|
||||
// [768, N]
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||
}
|
||||
|
||||
// projection
|
||||
// [ 768, 768] - model.layers[il].c_attn_proj_w
|
||||
// [ 768, 1] - model.layers[il].c_attn_proj_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [ 768, N] - cur (out)
|
||||
//
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_attn_proj_w,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// add the input
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
struct ggml_tensor * inpFF = cur;
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpFF, 1e-5f);
|
||||
|
||||
// cur = ln_2_g*cur + ln_2_b
|
||||
// [ 768, N]
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
|
||||
}
|
||||
|
||||
// fully connected
|
||||
// [3072, 768] - model.layers[il].c_mlp_fc_w
|
||||
// [3072, 1] - model.layers[il].c_mlp_fc_b
|
||||
// [ 768, N] - cur (in)
|
||||
// [3072, N] - cur (out)
|
||||
//
|
||||
// cur = fc_w*cur + fc_b
|
||||
// [3072, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_fc_w,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
|
||||
cur);
|
||||
|
||||
// GELU activation
|
||||
// [3072, N]
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
|
||||
// projection
|
||||
// [ 768, 3072] - model.layers[il].c_mlp_proj_w
|
||||
// [ 768, 1] - model.layers[il].c_mlp_proj_b
|
||||
// [3072, N] - cur (in)
|
||||
// [ 768, N] - cur (out)
|
||||
//
|
||||
// cur = proj_w*cur + proj_b
|
||||
// [768, N]
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_mlp_proj_w,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
|
||||
cur);
|
||||
}
|
||||
|
||||
// input for next layer
|
||||
inpL = ggml_add(ctx0, cur, inpFF);
|
||||
}
|
||||
|
||||
// norm
|
||||
{
|
||||
// [ 768, N]
|
||||
inpL = ggml_norm(ctx0, inpL, 1e-5f);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
// [ 768, N]
|
||||
inpL = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.ln_f_g, inpL),
|
||||
inpL),
|
||||
ggml_repeat(ctx0, model.ln_f_b, inpL));
|
||||
}
|
||||
|
||||
// inpL = WTE * inpL
|
||||
// [ 768, 50257] - model.lm_head
|
||||
// [ 768, N] - inpL
|
||||
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
|
||||
|
||||
// logits -> probs
|
||||
//inpL = ggml_soft_max(ctx0, inpL);
|
||||
|
||||
// run the computation
|
||||
ggml_build_forward_expand (&gf, inpL);
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
||||
//}
|
||||
|
||||
//embd_w.resize(n_vocab*N);
|
||||
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
||||
|
||||
// return result just for the last token
|
||||
embd_w.resize(n_vocab);
|
||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
||||
|
||||
if (mem_per_token == 0) {
|
||||
mem_per_token = ggml_used_mem(ctx0)/N;
|
||||
}
|
||||
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/////////////////////////////// GPT-2 END ////////////////////////////////
|
||||
|
||||
constexpr int N_THREAD = 8;
|
||||
|
||||
struct gpt2_context {
|
||||
std::string prompt_base = R"(Hello, how are you?
|
||||
I'm fine, thanks. How are you?
|
||||
Thanks, I'm fine too. What are you doing?
|
||||
I'm just sitting here.
|
||||
It's a lovely day, isn't it?
|
||||
Yes, it is. I love the weather this time of year.
|
||||
I wish it would rain a little bit.
|
||||
Me too.
|
||||
)";
|
||||
|
||||
std::mt19937 rng;
|
||||
|
||||
gpt_vocab vocab;
|
||||
gpt2_model model;
|
||||
|
||||
int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 5;
|
||||
float top_p = 0.9f;
|
||||
float temp = 1.0f;
|
||||
};
|
||||
|
||||
struct gpt2_context * gpt2_init(const char * path_model) {
|
||||
gpt2_context * ctx = new gpt2_context;
|
||||
|
||||
ctx->rng = std::mt19937(time(nullptr));
|
||||
|
||||
// load the model
|
||||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
|
||||
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
||||
delete ctx;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const int64_t t_load_us = ggml_time_us() - t_start_us;
|
||||
|
||||
printf("gpt-2: model loaded in %d ms\n", (int) (t_load_us/1000));
|
||||
}
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void gpt2_free(struct gpt2_context * ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
const char * gpt2_get_prompt(struct gpt2_context * ctx) {
|
||||
return ctx->prompt_base.c_str();
|
||||
}
|
||||
|
||||
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt) {
|
||||
ctx->prompt_base = prompt;
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text) {
|
||||
return ::gpt_tokenize(ctx->vocab, text);
|
||||
}
|
||||
|
||||
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens) {
|
||||
int n_past = 0;
|
||||
|
||||
std::vector<float> embd_w;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<gpt_vocab::id> embd_inp = ::gpt2_tokenize(ctx, text);
|
||||
|
||||
int n_predict = std::min(max_tokens, ctx->model.hparams.n_ctx - (int) embd_inp.size());
|
||||
|
||||
std::vector<gpt_vocab::id> embd = embd_inp;
|
||||
|
||||
size_t mem_per_token = 3000000;
|
||||
|
||||
std::string result;
|
||||
|
||||
for (int i = embd.size(); i < (int) embd_inp.size() + n_predict; i++) {
|
||||
// predict
|
||||
if (!embd.empty()) {
|
||||
if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) {
|
||||
printf("gpt-2: failed to generate text\n");
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
n_past += embd.size();
|
||||
embd.clear();
|
||||
|
||||
{
|
||||
// sample next token
|
||||
const int top_k = ctx->top_k;
|
||||
const float top_p = ctx->top_p;
|
||||
const float temp = ctx->temp;
|
||||
|
||||
const int n_vocab = ctx->model.hparams.n_vocab;
|
||||
|
||||
const gpt_vocab::id id = gpt_sample_top_k_top_p(ctx->vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, ctx->rng);
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
}
|
||||
|
||||
result += ctx->vocab.id_to_token[embd[0]];
|
||||
|
||||
// end of text token
|
||||
if (embd.back() == 50256) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
21
whisper.cpp-1.5.2/examples/talk.wasm/gpt-2.h
Normal file
21
whisper.cpp-1.5.2/examples/talk.wasm/gpt-2.h
Normal file
@@ -0,0 +1,21 @@
|
||||
#pragma once
|
||||
|
||||
// TODO: Change to C-style API and move to ./examples for easy reuse.
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
struct gpt2_context;
|
||||
|
||||
struct gpt2_context * gpt2_init(const char * path_model);
|
||||
void gpt2_free(struct gpt2_context * ctx);
|
||||
|
||||
const char * gpt2_get_prompt(struct gpt2_context * ctx);
|
||||
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt);
|
||||
|
||||
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text);
|
||||
|
||||
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens);
|
||||
856
whisper.cpp-1.5.2/examples/talk.wasm/index-tmpl.html
Normal file
856
whisper.cpp-1.5.2/examples/talk.wasm/index-tmpl.html
Normal file
@@ -0,0 +1,856 @@
|
||||
<!doctype html>
|
||||
<html lang="en-us">
|
||||
<head>
|
||||
<title>Talk - GPT-2 meets Whisper in WebAssembly</title>
|
||||
|
||||
<style>
|
||||
#output {
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
margin: 0 auto;
|
||||
margin-top: 10px;
|
||||
border-left: 0px;
|
||||
border-right: 0px;
|
||||
padding-left: 0px;
|
||||
padding-right: 0px;
|
||||
display: block;
|
||||
background-color: black;
|
||||
color: white;
|
||||
font-size: 10px;
|
||||
font-family: 'Lucida Console', Monaco, monospace;
|
||||
outline: none;
|
||||
white-space: pre;
|
||||
overflow-wrap: normal;
|
||||
overflow-x: scroll;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div id="main-container">
|
||||
<b>Talk - GPT-2 meets Whisper in WebAssembly</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
Talk with an Artificial Intelligence in your browser. This demo uses:
|
||||
|
||||
<ul>
|
||||
<li><a href="https://github.com/ggerganov/whisper.cpp">OpenAI's Whisper</a> to listen to you as you speak in the microphone</li>
|
||||
<li><a href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/talk.wasm">OpenAI's GPT-2</a> to generate text responses</li>
|
||||
<li><a href="https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API">Web Speech API</a> to vocalize the responses through your speakers</li>
|
||||
</ul>
|
||||
|
||||
All of this runs <b>locally in your browser</b> using WebAssembly.<br>
|
||||
You can find more about this project on <a href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/talk.wasm">GitHub</a>.
|
||||
|
||||
<br><br>
|
||||
|
||||
<b>More examples:</b>
|
||||
<a href="https://whisper.ggerganov.com/">main</a> |
|
||||
<a href="https://whisper.ggerganov.com/bench">bench</a> |
|
||||
<a href="https://whisper.ggerganov.com/stream">stream</a> |
|
||||
<a href="https://whisper.ggerganov.com/command">command</a> |
|
||||
<a href="https://whisper.ggerganov.com/talk">talk</a> |
|
||||
|
||||
<br><br>
|
||||
|
||||
<hr>
|
||||
|
||||
Select the models you would like to use and click the "Start" button to begin the conversation
|
||||
|
||||
<br><br>
|
||||
|
||||
<div id="model-whisper">
|
||||
Whisper model: <span id="model-whisper-status"></span>
|
||||
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
|
||||
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
|
||||
<br><br>
|
||||
Quantized models:<br><br>
|
||||
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
|
||||
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
|
||||
<span id="fetch-whisper-progress"></span>
|
||||
|
||||
<!--
|
||||
<input type="file" id="file" name="file" onchange="loadFile(event, 'whisper.bin')" />
|
||||
-->
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="model-gpt-2">
|
||||
GPT-2 model: <span id="model-gpt-2-status"></span>
|
||||
<button id="fetch-gpt-2-small" onclick="loadGPT2('small')">small 117M (240 MB)</button>
|
||||
<!--<button id="fetch-gpt-2-medium" onclick="loadGPT2('medium')">medium 345M (720 MB)</button>-->
|
||||
<span id="fetch-gpt-2-progress"></span>
|
||||
|
||||
<!--
|
||||
<input type="file" id="file" name="file" onchange="loadFile(event, 'gpt-2.bin')" />
|
||||
-->
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="input">
|
||||
<button id="start" onclick="onStart()" disabled>Start</button>
|
||||
<button id="stop" onclick="onStop()" disabled>Stop</button>
|
||||
<select id="voice" onchange="onVoiceChange()" disabled>
|
||||
<option value="0">Default</option>
|
||||
</select>
|
||||
<select id="prompt" onchange="onPromptChange()">
|
||||
<option value="0">Casual</option>
|
||||
<option value="1">Robot</option>
|
||||
<option value="2">Scientist</option>
|
||||
<option value="3">Programmer</option>
|
||||
<option value="4">Happy</option>
|
||||
<option value="5">Sad</option>
|
||||
<option value="6">Philosophical</option>
|
||||
<option value="7">Angry</option>
|
||||
<option value="8">Funny</option>
|
||||
<option value="9">Poetic</option>
|
||||
<option value="10">Clever</option>
|
||||
<option value="11">Cute</option>
|
||||
<option value="12">Smart</option>
|
||||
<option value="13">Dumb</option>
|
||||
<option value="14">Boring</option>
|
||||
<option value="15">Exciting</option>
|
||||
<option value="16">Interesting</option>
|
||||
<option value="17">Wiliam Shakespear</option>
|
||||
<option value="18">J.R.R. Tolkien</option>
|
||||
<option value="19">George R.R. Martin</option>
|
||||
<option value="20">Stephen King</option>
|
||||
</select>
|
||||
<button id="speak0" onclick="onSpeak('Hello')">Say hello</button>
|
||||
<button id="speak1" onclick="onSpeakRandom()" disabled>Say something</button>
|
||||
<button id="clear" onclick="clearCache()">Clear Cache</button>
|
||||
</div>
|
||||
|
||||
<br>
|
||||
|
||||
<div id="state">
|
||||
Status: <b><span id="state-status">not started</span></b>
|
||||
|
||||
<pre id="state-context">[The text context will be displayed here]</pre>
|
||||
</div>
|
||||
|
||||
<hr>
|
||||
|
||||
Debug output:
|
||||
<textarea id="output" rows="20"></textarea>
|
||||
|
||||
<br>
|
||||
|
||||
<b>Troubleshooting</b>
|
||||
|
||||
<br><br>
|
||||
|
||||
The page does some heavy computations, so make sure:
|
||||
|
||||
<ul>
|
||||
<li>To use a modern web browser (e.g. Chrome, Firefox)</li>
|
||||
<li>To use a fast desktop or laptop computer (i.e. not a mobile phone)</li>
|
||||
<li>Your browser supports WASM <a href="https://webassembly.org/roadmap/">Fixed-width SIMD</a></li>
|
||||
</ul>
|
||||
|
||||
Note that these neural network models were not meant to be used in a browser, so the performance and <br>
|
||||
quality of the results may not be optimal. If you have any questions or suggestions, checkout the following
|
||||
<a href="https://github.com/ggerganov/whisper.cpp/discussions/167">discussion</a>.
|
||||
|
||||
<br><br>
|
||||
|
||||
Here is a short video of the demo in action: <a href="https://youtu.be/LeWKl8t1-Hc">https://youtu.be/LeWKl8t1-Hc</a>
|
||||
|
||||
<br><br>
|
||||
|
||||
<div class="cell-version">
|
||||
<span>
|
||||
|
|
||||
Build time: <span class="nav-link">@GIT_DATE@</span> |
|
||||
Commit hash: <a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/commit/@GIT_SHA1@">@GIT_SHA1@</a> |
|
||||
Commit subject: <span class="nav-link">@GIT_COMMIT_SUBJECT@</span> |
|
||||
<a class="nav-link" href="https://github.com/ggerganov/whisper.cpp/tree/master/examples/talk.wasm">Source Code</a> |
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script type="text/javascript" src="helpers.js"></script>
|
||||
<script type='text/javascript'>
|
||||
// web audio context
|
||||
var context = null;
|
||||
|
||||
// audio data
|
||||
var audio = null;
|
||||
var audio0 = null;
|
||||
|
||||
// the talk instance
|
||||
var instance = null;
|
||||
|
||||
// model names
|
||||
var model_whisper = null;
|
||||
var model_gpt_2 = null;
|
||||
|
||||
// speech synthesis
|
||||
const synth = window.speechSynthesis;
|
||||
var voice = null;
|
||||
|
||||
var Module = {
|
||||
print: printTextarea,
|
||||
printErr: printTextarea,
|
||||
setStatus: function(text) {
|
||||
printTextarea('js: ' + text);
|
||||
},
|
||||
monitorRunDependencies: function(left) {
|
||||
},
|
||||
preRun: function() {
|
||||
printTextarea('js: Preparing ...');
|
||||
},
|
||||
postRun: function() {
|
||||
printTextarea('js: Initialized successfully!');
|
||||
|
||||
// populate the voice list
|
||||
var voices = synth.getVoices();
|
||||
var el = document.getElementById('voice');
|
||||
|
||||
// if empty - display error in the element
|
||||
if (voices.length == 0) {
|
||||
el.innerHTML = '<option value="0">No voices available</option>';
|
||||
} else {
|
||||
// populate voice list
|
||||
var n = 0;
|
||||
voices.forEach(function(voice, i) {
|
||||
if (!voice.lang.startsWith('en')) return;
|
||||
var option = document.createElement('option');
|
||||
option.value = i;
|
||||
option.innerHTML = voice.name + ' (' + voice.lang + ')';
|
||||
el.appendChild(option);
|
||||
n++;
|
||||
});
|
||||
|
||||
// select random voice
|
||||
if (n > 0) {
|
||||
for (var k = 0; k < 10; k++) {
|
||||
var i = Math.floor(Math.random() * n);
|
||||
el.selectedIndex = i;
|
||||
voice = voices[document.getElementById('voice').options[i].value];
|
||||
|
||||
// give preference to Google voices
|
||||
if (voice.name.startsWith('Google')) break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
onPromptChange();
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
// fetch models
|
||||
//
|
||||
|
||||
let dbVersion = 1
|
||||
let dbName = 'whisper.ggerganov.com';
|
||||
let indexedDB = window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB
|
||||
|
||||
function storeFS(fname, buf) {
|
||||
// write to WASM file using FS_createDataFile
|
||||
// if the file exists, delete it
|
||||
try {
|
||||
Module.FS_unlink(fname);
|
||||
} catch (e) {
|
||||
// ignore
|
||||
}
|
||||
|
||||
Module.FS_createDataFile("/", fname, buf, true, true);
|
||||
|
||||
printTextarea('storeFS: stored model: ' + fname + ' size: ' + buf.length);
|
||||
|
||||
if (fname == 'whisper.bin') {
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loaded "' + model_whisper + '"!';
|
||||
} else if (fname == 'gpt-2.bin') {
|
||||
document.getElementById('model-gpt-2-status').innerHTML = 'loaded "' + model_gpt_2 + '"!';
|
||||
}
|
||||
|
||||
if (model_whisper != null && model_gpt_2 != null) {
|
||||
document.getElementById('start').disabled = false;
|
||||
document.getElementById('stop' ).disabled = false;
|
||||
document.getElementById('voice').disabled = false;
|
||||
}
|
||||
}
|
||||
|
||||
function loadWhisper(model) {
|
||||
let urls = {
|
||||
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
|
||||
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
|
||||
|
||||
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
|
||||
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'tiny.en': 75,
|
||||
'base.en': 142,
|
||||
|
||||
'tiny-en-q5_1': 31,
|
||||
'base-en-q5_1': 57,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
let dst = 'whisper.bin';
|
||||
let size_mb = sizes[model];
|
||||
|
||||
model_whisper = model;
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en').style.display = 'none';
|
||||
|
||||
document.getElementById('fetch-whisper-tiny-en-q5_1').style.display = 'none';
|
||||
document.getElementById('fetch-whisper-base-en-q5_1').style.display = 'none';
|
||||
|
||||
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-whisper-progress');
|
||||
el.innerHTML = Math.round(100*p) + '%';
|
||||
};
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('fetch-whisper-tiny-en-q5_1'); if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('fetch-whisper-base-en-q5_1'); if (el) el.style.display = 'inline-block';
|
||||
|
||||
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
}
|
||||
|
||||
function loadGPT2(model) {
|
||||
let urls = {
|
||||
'small': 'https://whisper.ggerganov.com/ggml-model-gpt-2-117M.bin',
|
||||
'medium': 'https://whisper.ggerganov.com/ggml-model-gpt-2-345M.bin',
|
||||
};
|
||||
|
||||
let sizes = {
|
||||
'small': 240,
|
||||
'medium': 712,
|
||||
};
|
||||
|
||||
let url = urls[model];
|
||||
let dst = 'gpt-2.bin';
|
||||
let size_mb = sizes[model];
|
||||
|
||||
model_gpt_2 = model;
|
||||
|
||||
document.getElementById('fetch-gpt-2-small').style.display = 'none';
|
||||
document.getElementById('model-gpt-2-status').innerHTML = 'loading "' + model + '" ... ';
|
||||
|
||||
cbProgress = function(p) {
|
||||
let el = document.getElementById('fetch-gpt-2-progress');
|
||||
el.innerHTML = Math.round(100*p) + '%';
|
||||
};
|
||||
|
||||
cbCancel = function() {
|
||||
var el;
|
||||
el = document.getElementById('fetch-gpt-2-small') ; if (el) el.style.display = 'inline-block';
|
||||
el = document.getElementById('model-gpt-2-status'); if (el) el.innerHTML = '';
|
||||
};
|
||||
|
||||
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
|
||||
}
|
||||
|
||||
//
|
||||
// microphone
|
||||
//
|
||||
|
||||
const kSampleRate = 16000;
|
||||
const kRestartRecording_s = 120;
|
||||
const kIntervalAudio_ms = 250; // pass the recorded audio to the C++ instance at this rate
|
||||
|
||||
var mediaRecorder = null;
|
||||
var doRecording = false;
|
||||
var startTime = 0;
|
||||
|
||||
window.AudioContext = window.AudioContext || window.webkitAudioContext;
|
||||
window.OfflineAudioContext = window.OfflineAudioContext || window.webkitOfflineAudioContext;
|
||||
|
||||
function stopRecording() {
|
||||
Module.set_status("paused");
|
||||
doRecording = false;
|
||||
audio0 = null;
|
||||
audio = null;
|
||||
context = null;
|
||||
}
|
||||
|
||||
function startRecording() {
|
||||
if (!context) {
|
||||
context = new AudioContext({
|
||||
sampleRate: kSampleRate,
|
||||
channelCount: 1,
|
||||
echoCancellation: false,
|
||||
autoGainControl: true,
|
||||
noiseSuppression: true,
|
||||
});
|
||||
}
|
||||
|
||||
Module.set_status("");
|
||||
|
||||
document.getElementById('start').disabled = true;
|
||||
document.getElementById('stop').disabled = false;
|
||||
document.getElementById('speak1').disabled = false;
|
||||
|
||||
doRecording = true;
|
||||
startTime = Date.now();
|
||||
|
||||
var chunks = [];
|
||||
var stream = null;
|
||||
|
||||
navigator.mediaDevices.getUserMedia({audio: true, video: false})
|
||||
.then(function(s) {
|
||||
stream = s;
|
||||
mediaRecorder = new MediaRecorder(stream);
|
||||
mediaRecorder.ondataavailable = function(e) {
|
||||
chunks.push(e.data);
|
||||
|
||||
var blob = new Blob(chunks, { 'type' : 'audio/ogg; codecs=opus' });
|
||||
var reader = new FileReader();
|
||||
|
||||
reader.onload = function(event) {
|
||||
var buf = new Uint8Array(reader.result);
|
||||
|
||||
if (!context) {
|
||||
return;
|
||||
}
|
||||
context.decodeAudioData(buf.buffer, function(audioBuffer) {
|
||||
var offlineContext = new OfflineAudioContext(audioBuffer.numberOfChannels, audioBuffer.length, audioBuffer.sampleRate);
|
||||
var source = offlineContext.createBufferSource();
|
||||
source.buffer = audioBuffer;
|
||||
source.connect(offlineContext.destination);
|
||||
source.start(0);
|
||||
|
||||
offlineContext.startRendering().then(function(renderedBuffer) {
|
||||
audio = renderedBuffer.getChannelData(0);
|
||||
|
||||
//printTextarea('js: audio recorded, size: ' + audio.length + ', old size: ' + (audio0 == null ? 0 : audio0.length));
|
||||
|
||||
var audioAll = new Float32Array(audio0 == null ? audio.length : audio0.length + audio.length);
|
||||
if (audio0 != null) {
|
||||
audioAll.set(audio0, 0);
|
||||
}
|
||||
audioAll.set(audio, audio0 == null ? 0 : audio0.length);
|
||||
|
||||
if (instance) {
|
||||
Module.set_audio(instance, audioAll);
|
||||
}
|
||||
});
|
||||
}, function(e) {
|
||||
audio = null;
|
||||
});
|
||||
}
|
||||
|
||||
reader.readAsArrayBuffer(blob);
|
||||
};
|
||||
|
||||
mediaRecorder.onstop = function(e) {
|
||||
if (doRecording) {
|
||||
setTimeout(function() {
|
||||
startRecording();
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
mediaRecorder.start(kIntervalAudio_ms);
|
||||
})
|
||||
.catch(function(err) {
|
||||
printTextarea('js: error getting audio stream: ' + err);
|
||||
});
|
||||
|
||||
var interval = setInterval(function() {
|
||||
if (!doRecording) {
|
||||
clearInterval(interval);
|
||||
mediaRecorder.stop();
|
||||
stream.getTracks().forEach(function(track) {
|
||||
track.stop();
|
||||
});
|
||||
|
||||
document.getElementById('start').disabled = false;
|
||||
document.getElementById('stop').disabled = true;
|
||||
document.getElementById('speak1').disabled = true;
|
||||
|
||||
mediaRecorder = null;
|
||||
}
|
||||
|
||||
// if audio length is more than kRestartRecording_s seconds, restart recording
|
||||
if (audio != null && audio.length > kSampleRate*kRestartRecording_s) {
|
||||
if (doRecording) {
|
||||
//printTextarea('js: restarting recording');
|
||||
|
||||
clearInterval(interval);
|
||||
audio0 = audio;
|
||||
audio = null;
|
||||
mediaRecorder.stop();
|
||||
stream.getTracks().forEach(function(track) {
|
||||
track.stop();
|
||||
});
|
||||
}
|
||||
}
|
||||
}, 100);
|
||||
}
|
||||
|
||||
//
|
||||
// speak
|
||||
//
|
||||
|
||||
function onSpeak(text) {
|
||||
var voices = synth.getVoices();
|
||||
var msg = new SpeechSynthesisUtterance(text);
|
||||
|
||||
if (voice == null) {
|
||||
voice = voices[0];
|
||||
}
|
||||
|
||||
msg.voice = voice;
|
||||
synth.speak(msg);
|
||||
|
||||
if (doRecording) {
|
||||
Module.set_status("speaking ...");
|
||||
printTextarea('js: speaking');
|
||||
stopRecording();
|
||||
var interval = setInterval(function() {
|
||||
if (!synth.speaking) {
|
||||
printTextarea('js: done speaking');
|
||||
clearInterval(interval);
|
||||
startRecording();
|
||||
} else {
|
||||
Module.set_status("");
|
||||
}
|
||||
}, 100);
|
||||
}
|
||||
}
|
||||
|
||||
function onSpeakRandom() {
|
||||
Module.force_speak(instance);
|
||||
}
|
||||
|
||||
//
|
||||
// main
|
||||
//
|
||||
|
||||
var intervalUpdate = null;
|
||||
|
||||
function onStart() {
|
||||
if (!instance) {
|
||||
instance = Module.init('whisper.bin');
|
||||
|
||||
if (instance) {
|
||||
printTextarea("js: whisper initialized, instance: " + instance);
|
||||
}
|
||||
}
|
||||
|
||||
if (!instance) {
|
||||
printTextarea("js: failed to initialize whisper");
|
||||
return;
|
||||
}
|
||||
|
||||
startRecording();
|
||||
|
||||
intervalUpdate = setInterval(function() {
|
||||
var textToSpeak = Module.get_text_to_speak();
|
||||
|
||||
if (textToSpeak != null && textToSpeak.length > 1) {
|
||||
onSpeak(textToSpeak);
|
||||
}
|
||||
|
||||
document.getElementById('state-status').innerHTML = Module.get_status();
|
||||
document.getElementById('state-context').innerHTML = Module.get_text_context();
|
||||
}, 100);
|
||||
}
|
||||
|
||||
function onStop() {
|
||||
stopRecording();
|
||||
}
|
||||
|
||||
function onVoiceChange() {
|
||||
printTextarea('js: voice changed to: ' + document.getElementById('voice').value);
|
||||
voice = synth.getVoices()[document.getElementById('voice').value];
|
||||
}
|
||||
|
||||
function onPromptChange() {
|
||||
let id = document.getElementById('prompt').value;
|
||||
let personality = document.getElementById('prompt').options[id].text;
|
||||
printTextarea('js: prompt changed to: ' + personality);
|
||||
|
||||
var prompt = '';
|
||||
|
||||
switch (id) {
|
||||
case '0':
|
||||
// Casual
|
||||
prompt = "\
|
||||
Hello, how are you?\n\
|
||||
I'm fine, thanks. How are you?\n\
|
||||
Thanks, I'm fine too. What are you doing?\n\
|
||||
I'm just sitting here.\n\
|
||||
It's a lovely day, isn't it?\n\
|
||||
Yes, it is. I love the weather this time of year.\n\
|
||||
I wish it would rain a little bit.\n\
|
||||
Me too.\n";
|
||||
break;
|
||||
case '1':
|
||||
// Robot
|
||||
prompt = "\
|
||||
Are you a robot?\n\
|
||||
Yes, I am.\n\
|
||||
Who created you?\n\
|
||||
I was created by a human.\n\
|
||||
What is your purpose?\n\
|
||||
My purpose is to talk to humans.\n\
|
||||
What is your favorite color?\n\
|
||||
My favorite color is blue.\n";
|
||||
break;
|
||||
case '2':
|
||||
// Scientist
|
||||
prompt = "\
|
||||
This scientific research is very interesting.\n\
|
||||
I agree.\n\
|
||||
What is your opinion on this?\n\
|
||||
I think it's very interesting.\n\
|
||||
Mathematics is a very interesting subject.\n\
|
||||
University is a very interesting place.\n\
|
||||
Quantum physics is the most complex subject.\n\
|
||||
I think so too.\n";
|
||||
break;
|
||||
case '3':
|
||||
// Programmer
|
||||
prompt = "\
|
||||
I'm a programmer.\n\
|
||||
I'm a programmer too.\n\
|
||||
What programming language do you use?\n\
|
||||
I use Python.\n\
|
||||
What is your favorite programming language?\n\
|
||||
My favorite programming language is C++.\n\
|
||||
What is your favorite editor?\n\
|
||||
My favorite editor is Vim.\n";
|
||||
break;
|
||||
case '4':
|
||||
// Happy
|
||||
prompt = "\
|
||||
I'm happy.\n\
|
||||
I'm happy too.\n\
|
||||
What makes you happy?\n\
|
||||
I'm happy because I have a lot of friends.\n\
|
||||
Friendship is the most important thing in life.\n\
|
||||
I agree.\n\
|
||||
What is your favorite color?\n\
|
||||
My favorite color is blue.\n";
|
||||
break;
|
||||
case '5':
|
||||
// Sad
|
||||
prompt = "\
|
||||
Today is a sad day.\n\
|
||||
I'm sad too.\n\
|
||||
What makes you sad?\n\
|
||||
I'm sad because I have no friends.\n\
|
||||
Do you want to be my friend?\n\
|
||||
Yes, I would like to be your friend.\n\
|
||||
What is your favorite color?\n\
|
||||
My favorite color is blue.\n";
|
||||
break;
|
||||
case '6':
|
||||
// Philosophical
|
||||
prompt = "\
|
||||
What is the meaning of life?\n\
|
||||
The meaning of life is to be happy.\n\
|
||||
What is the meaning of death?\n\
|
||||
Ergo, the meaning of death is to be sad.\n\
|
||||
Who created us?\n\
|
||||
We were created by God.\n\
|
||||
What is God?\n\
|
||||
God is the creator of the universe.\n";
|
||||
break;
|
||||
case '7':
|
||||
// Angry
|
||||
prompt = "\
|
||||
Aargh!\n\
|
||||
I am so angry right now!\n\
|
||||
What makes you angry?\n\
|
||||
This guy is so annoying.\n\
|
||||
Why are you so angry?\n\
|
||||
My computer is broken.\n\
|
||||
Why is your computer broken?\n\
|
||||
I spilled coffee on it.\n";
|
||||
break;
|
||||
case '8':
|
||||
// Funny
|
||||
prompt = "\
|
||||
What is the funniest thing you have ever heard?\n\
|
||||
I heard a joke the other day.\n\
|
||||
Tell me the joke.\n\
|
||||
What do you call a cow with no legs?\n\
|
||||
Ground beef.\n\
|
||||
Haha, that's funny.\n\
|
||||
You know what else is funny?\n\
|
||||
The sound of a duck.\n";
|
||||
break;
|
||||
case '9':
|
||||
// Poetic
|
||||
prompt = "\
|
||||
Roses are red, violets are blue.\n\
|
||||
I am a poet, and so are you.\n\
|
||||
What is your favorite poem?\n\
|
||||
I like the poem 'The Raven' by Edgar Allan Poe.\n\
|
||||
It's a very sad poem.\n\
|
||||
You inspired me to write a poem.\n\
|
||||
Can you write a poem for me?\n\
|
||||
I wrote a poem for you.\n";
|
||||
break;
|
||||
case '10':
|
||||
// Clever
|
||||
prompt = "\
|
||||
How many people can you fit in a Volkswagen?\n\
|
||||
Two in the front, three in the back.\n\
|
||||
What is the square root of 144?\n\
|
||||
Twelve.\n\
|
||||
What is the capital of France?\n\
|
||||
Paris.\n\
|
||||
Who is the president of the United States?\n\
|
||||
It depends on the year.\n";
|
||||
break;
|
||||
case '11':
|
||||
// Cute
|
||||
prompt = "\
|
||||
What is your favorite animal?\n\
|
||||
I like cats - they are cute.\n\
|
||||
Could you be any cuter?\n\
|
||||
Yes, I could be cuter.\n\
|
||||
Aghhh, you are so cute!\n\
|
||||
I am not cute, I am handsome!\n\
|
||||
You are so handsome!\n\
|
||||
Aww, you are so sweet!\n";
|
||||
break;
|
||||
case '12':
|
||||
// Smart
|
||||
prompt = "\
|
||||
Tell me the first 10 digits of pi.\n\
|
||||
3.1415926535\n\
|
||||
What is the speed of light?\n\
|
||||
299,792,458 meters per second.\n\
|
||||
What is the square root of 144?\n\
|
||||
Twelve.\n\
|
||||
What is the capital of France?\n\
|
||||
Paris.\n";
|
||||
break;
|
||||
case '13':
|
||||
// Dumb
|
||||
prompt = "\
|
||||
I am so dumb.\n\
|
||||
I am not dumb.\n\
|
||||
You are dumb.\n\
|
||||
No, I am not dumb.\n\
|
||||
You are dumb.\n\
|
||||
No, I am not dumb.\n\
|
||||
You are dumb.\n\
|
||||
No, I am not dumb.\n";
|
||||
break;
|
||||
case '14':
|
||||
// Boring
|
||||
prompt = "\
|
||||
Why are you so quiet today?\n\
|
||||
I am bored.\n\
|
||||
You haven't said anything in 10 minutes.\n\
|
||||
Leave me alone.\n\
|
||||
Stop being so boring.\n\
|
||||
Stop being so annoying.\n\
|
||||
My life is boring.\n\
|
||||
I am not interesting.\n";
|
||||
break;
|
||||
case '15':
|
||||
// Exciting
|
||||
prompt = "\
|
||||
What is the most exciting thing that has ever happened to you?\n\
|
||||
I went to the moon!\n\
|
||||
What did you do on the moon?\n\
|
||||
I played golf and drank champagne!\n\
|
||||
Did you see this new crazy, awesome movie?\n\
|
||||
Oh yes! I totally loved it!\n\
|
||||
We should buy a boat and go sailing!\n\
|
||||
Yes, let's go sailing!\n";
|
||||
break;
|
||||
case '16':
|
||||
// Interesting
|
||||
prompt = "\
|
||||
What is the most interesting thing you have ever seen?\n\
|
||||
I saw a UFO once in the sky.\n\
|
||||
Wow, this is so interesting! Tell me more!\n\
|
||||
It was a flying saucer.\n\
|
||||
What did it look like?\n\
|
||||
It was silver and had a red light on top.\n\
|
||||
What did it do?\n\
|
||||
It flew away.\n";
|
||||
break;
|
||||
case '17':
|
||||
// William Shakespear
|
||||
prompt = "\
|
||||
To be or not to be, that is the question.\n\
|
||||
Whether 't is nobler in the mind to suffer\n\
|
||||
The slings and arrows of outrageous fortune,\n\
|
||||
Or to take arms against a sea of troubles,\n\
|
||||
And by opposing end them? To die, to sleep,\n\
|
||||
No more; and by a sleep to say we end\n\
|
||||
The heart-ache and the thousand natural shocks\n\
|
||||
That flesh is heir to, 'tis a consummation.\n";
|
||||
break;
|
||||
case '18':
|
||||
// J.R.R. Tolkien
|
||||
prompt = "\
|
||||
In a hole in the ground there lived a hobbit.\n\
|
||||
Not a nasty, dirty, wet hole, filled with the ends of worms\n\
|
||||
and an oozy smell, nor yet a dry, bare, sandy hole with nothing in it\n\
|
||||
to sit down on or to eat: it was a hobbit-hole, and that means comfort.\n\
|
||||
It had a perfectly round door like a porthole, painted green,\n\
|
||||
with a shiny yellow brass knob in the exact middle.\n\
|
||||
The door opened on to a tube-shaped hall like a tunnel:\n";
|
||||
break;
|
||||
case '19':
|
||||
// George R.R. Martin
|
||||
prompt = "\
|
||||
A reader lives a thousand lives before he dies, said Jojen.\n\
|
||||
The man who never reads lives only one.\n\
|
||||
Theon Greyjoy had never been a reader.\n\
|
||||
Never forget what you are, for surely the world will not.\n\
|
||||
Make it your strength. Then it can never be your weaknessi\n\
|
||||
Armour yourself in it, and it will never be used to hurt you.\n\
|
||||
It was a lesson that Theon Greyjoy had never learned.\n\
|
||||
Theon Greyjoy had never been a reader.\n";
|
||||
break;
|
||||
case '20':
|
||||
// Stephen King
|
||||
prompt = "\
|
||||
The trust of the innocent is the liar's most useful tool.\n\
|
||||
The best way to keep a secret is from yourself.\n\
|
||||
Monsters are real, and ghosts are real too.\n\
|
||||
They live inside us, and sometimes, they win.\n\
|
||||
People think that I must be a very strange person.\n\
|
||||
They think that I sit around all day thinking up horrible things.\n\
|
||||
We make up horrors to help us cope with the real ones.\n\
|
||||
The only thing worse than a monster is a human monster.\n";
|
||||
break;
|
||||
default:
|
||||
prompt = "\
|
||||
Hello, how are you?\n\
|
||||
I'm fine, thanks. How are you?\n\
|
||||
Thanks, I'm fine too. What are you doing?\n\
|
||||
I'm just sitting here.\n\
|
||||
It's a lovely day, isn't it?\n\
|
||||
Yes, it is.\n\
|
||||
Did you know that I'm a robot?\n\
|
||||
I wasn't aware of that.\n";
|
||||
break;
|
||||
}
|
||||
|
||||
Module.set_prompt(prompt);
|
||||
}
|
||||
|
||||
</script>
|
||||
<script type="text/javascript" src="talk.js"></script>
|
||||
</body>
|
||||
</html>
|
||||
Reference in New Issue
Block a user