Add app.py

main
Kar 2024-06-08 08:45:25 +00:00
commit e6e9788d29
1 changed files with 76 additions and 0 deletions

76
app.py Normal file
View File

@ -0,0 +1,76 @@
from flask import Flask, request, jsonify
from flask_cors import CORS
import face_recognition
import os
import numpy as np
import pickle
app = Flask(__name__)
CORS(app)
#pip install Flask flask-cors face_recognition
# Directory to save student images and encodings
STUDENT_IMAGES_DIR = 'student_images'
STUDENT_ENCODINGS_FILE = 'student_encodings.pkl'
# Ensure the directory exists
os.makedirs(STUDENT_IMAGES_DIR, exist_ok=True)
# Load existing encodings if available
if os.path.exists(STUDENT_ENCODINGS_FILE):
with open(STUDENT_ENCODINGS_FILE, 'rb') as f:
student_encodings = pickle.load(f)
else:
student_encodings = {}
@app.route('/upload_images', methods=['POST'])
def upload_images():
student_id = request.form.get('student_id')
if 'images' not in request.files or not student_id:
return jsonify({"error": "No images or student ID provided"}), 400
images = request.files.getlist('images')
encodings = []
for image in images:
image_path = os.path.join(STUDENT_IMAGES_DIR, f"{student_id}_{image.filename}")
image.save(image_path)
# Load the image and get the face encodings
img = face_recognition.load_image_file(image_path)
img_encodings = face_recognition.face_encodings(img)
if img_encodings:
encodings.append(img_encodings[0])
if encodings:
student_encodings[student_id] = np.mean(encodings, axis=0)
# Save the encodings to file
with open(STUDENT_ENCODINGS_FILE, 'wb') as f:
pickle.dump(student_encodings, f)
return jsonify({"message": "Images uploaded and processed successfully"}), 200
else:
return jsonify({"error": "No faces found in the uploaded images"}), 400
@app.route('/recognize', methods=['POST'])
def recognize():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
image = request.files['image']
img = face_recognition.load_image_file(image)
img_encodings = face_recognition.face_encodings(img)
if img_encodings:
img_encoding = img_encodings[0]
distances = {student_id: np.linalg.norm(encoding - img_encoding) for student_id, encoding in student_encodings.items()}
student_id = min(distances, key=distances.get)
return jsonify({"student_id": student_id}), 200
else:
return jsonify({"error": "No face found in the uploaded image"}), 400
if __name__ == '__main__':
app.run(debug=True)